xref: /openbmc/linux/arch/arm/mach-omap2/omap-smp.c (revision c4ee0af3)
1 /*
2  * OMAP4 SMP source file. It contains platform specific functions
3  * needed for the linux smp kernel.
4  *
5  * Copyright (C) 2009 Texas Instruments, Inc.
6  *
7  * Author:
8  *      Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *
10  * Platform file needed for the OMAP4 SMP. This file is based on arm
11  * realview smp platform.
12  * * Copyright (c) 2002 ARM Limited.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23 
24 #include <asm/smp_scu.h>
25 
26 #include "omap-secure.h"
27 #include "omap-wakeupgen.h"
28 #include <asm/cputype.h>
29 
30 #include "soc.h"
31 #include "iomap.h"
32 #include "common.h"
33 #include "clockdomain.h"
34 #include "pm.h"
35 
36 #define CPU_MASK		0xff0ffff0
37 #define CPU_CORTEX_A9		0x410FC090
38 #define CPU_CORTEX_A15		0x410FC0F0
39 
40 #define OMAP5_CORE_COUNT	0x2
41 
42 u16 pm44xx_errata;
43 
44 /* SCU base address */
45 static void __iomem *scu_base;
46 
47 static DEFINE_SPINLOCK(boot_lock);
48 
49 void __iomem *omap4_get_scu_base(void)
50 {
51 	return scu_base;
52 }
53 
54 static void omap4_secondary_init(unsigned int cpu)
55 {
56 	/*
57 	 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
58 	 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
59 	 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
60 	 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
61 	 * OMAP443X GP devices- SMP bit isn't accessible.
62 	 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
63 	 */
64 	if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
65 		omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
66 							4, 0, 0, 0, 0, 0);
67 
68 	/*
69 	 * Configure the CNTFRQ register for the secondary cpu's which
70 	 * indicates the frequency of the cpu local timers.
71 	 */
72 	if (soc_is_omap54xx() || soc_is_dra7xx())
73 		set_cntfreq();
74 
75 	/*
76 	 * Synchronise with the boot thread.
77 	 */
78 	spin_lock(&boot_lock);
79 	spin_unlock(&boot_lock);
80 }
81 
82 static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
83 {
84 	static struct clockdomain *cpu1_clkdm;
85 	static bool booted;
86 	static struct powerdomain *cpu1_pwrdm;
87 	void __iomem *base = omap_get_wakeupgen_base();
88 
89 	/*
90 	 * Set synchronisation state between this boot processor
91 	 * and the secondary one
92 	 */
93 	spin_lock(&boot_lock);
94 
95 	/*
96 	 * Update the AuxCoreBoot0 with boot state for secondary core.
97 	 * omap4_secondary_startup() routine will hold the secondary core till
98 	 * the AuxCoreBoot1 register is updated with cpu state
99 	 * A barrier is added to ensure that write buffer is drained
100 	 */
101 	if (omap_secure_apis_support())
102 		omap_modify_auxcoreboot0(0x200, 0xfffffdff);
103 	else
104 		__raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0);
105 
106 	if (!cpu1_clkdm && !cpu1_pwrdm) {
107 		cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
108 		cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
109 	}
110 
111 	/*
112 	 * The SGI(Software Generated Interrupts) are not wakeup capable
113 	 * from low power states. This is known limitation on OMAP4 and
114 	 * needs to be worked around by using software forced clockdomain
115 	 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
116 	 * software force wakeup. The clockdomain is then put back to
117 	 * hardware supervised mode.
118 	 * More details can be found in OMAP4430 TRM - Version J
119 	 * Section :
120 	 *	4.3.4.2 Power States of CPU0 and CPU1
121 	 */
122 	if (booted && cpu1_pwrdm && cpu1_clkdm) {
123 		/*
124 		 * GIC distributor control register has changed between
125 		 * CortexA9 r1pX and r2pX. The Control Register secure
126 		 * banked version is now composed of 2 bits:
127 		 * bit 0 == Secure Enable
128 		 * bit 1 == Non-Secure Enable
129 		 * The Non-Secure banked register has not changed
130 		 * Because the ROM Code is based on the r1pX GIC, the CPU1
131 		 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
132 		 * The workaround must be:
133 		 * 1) Before doing the CPU1 wakeup, CPU0 must disable
134 		 * the GIC distributor
135 		 * 2) CPU1 must re-enable the GIC distributor on
136 		 * it's wakeup path.
137 		 */
138 		if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
139 			local_irq_disable();
140 			gic_dist_disable();
141 		}
142 
143 		/*
144 		 * Ensure that CPU power state is set to ON to avoid CPU
145 		 * powerdomain transition on wfi
146 		 */
147 		clkdm_wakeup(cpu1_clkdm);
148 		omap_set_pwrdm_state(cpu1_pwrdm, PWRDM_POWER_ON);
149 		clkdm_allow_idle(cpu1_clkdm);
150 
151 		if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
152 			while (gic_dist_disabled()) {
153 				udelay(1);
154 				cpu_relax();
155 			}
156 			gic_timer_retrigger();
157 			local_irq_enable();
158 		}
159 	} else {
160 		dsb_sev();
161 		booted = true;
162 	}
163 
164 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
165 
166 	/*
167 	 * Now the secondary core is starting up let it run its
168 	 * calibrations, then wait for it to finish
169 	 */
170 	spin_unlock(&boot_lock);
171 
172 	return 0;
173 }
174 
175 /*
176  * Initialise the CPU possible map early - this describes the CPUs
177  * which may be present or become present in the system.
178  */
179 static void __init omap4_smp_init_cpus(void)
180 {
181 	unsigned int i = 0, ncores = 1, cpu_id;
182 
183 	/* Use ARM cpuid check here, as SoC detection will not work so early */
184 	cpu_id = read_cpuid_id() & CPU_MASK;
185 	if (cpu_id == CPU_CORTEX_A9) {
186 		/*
187 		 * Currently we can't call ioremap here because
188 		 * SoC detection won't work until after init_early.
189 		 */
190 		scu_base =  OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
191 		BUG_ON(!scu_base);
192 		ncores = scu_get_core_count(scu_base);
193 	} else if (cpu_id == CPU_CORTEX_A15) {
194 		ncores = OMAP5_CORE_COUNT;
195 	}
196 
197 	/* sanity check */
198 	if (ncores > nr_cpu_ids) {
199 		pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
200 			ncores, nr_cpu_ids);
201 		ncores = nr_cpu_ids;
202 	}
203 
204 	for (i = 0; i < ncores; i++)
205 		set_cpu_possible(i, true);
206 }
207 
208 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
209 {
210 	void *startup_addr = omap4_secondary_startup;
211 	void __iomem *base = omap_get_wakeupgen_base();
212 
213 	/*
214 	 * Initialise the SCU and wake up the secondary core using
215 	 * wakeup_secondary().
216 	 */
217 	if (scu_base)
218 		scu_enable(scu_base);
219 
220 	if (cpu_is_omap446x()) {
221 		startup_addr = omap4460_secondary_startup;
222 		pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
223 	}
224 
225 	/*
226 	 * Write the address of secondary startup routine into the
227 	 * AuxCoreBoot1 where ROM code will jump and start executing
228 	 * on secondary core once out of WFE
229 	 * A barrier is added to ensure that write buffer is drained
230 	 */
231 	if (omap_secure_apis_support())
232 		omap_auxcoreboot_addr(virt_to_phys(startup_addr));
233 	else
234 		__raw_writel(virt_to_phys(omap5_secondary_startup),
235 						base + OMAP_AUX_CORE_BOOT_1);
236 
237 }
238 
239 struct smp_operations omap4_smp_ops __initdata = {
240 	.smp_init_cpus		= omap4_smp_init_cpus,
241 	.smp_prepare_cpus	= omap4_smp_prepare_cpus,
242 	.smp_secondary_init	= omap4_secondary_init,
243 	.smp_boot_secondary	= omap4_boot_secondary,
244 #ifdef CONFIG_HOTPLUG_CPU
245 	.cpu_die		= omap4_cpu_die,
246 #endif
247 };
248