xref: /openbmc/linux/arch/arm/mach-omap2/omap-smp.c (revision 97da55fc)
1 /*
2  * OMAP4 SMP source file. It contains platform specific fucntions
3  * needed for the linux smp kernel.
4  *
5  * Copyright (C) 2009 Texas Instruments, Inc.
6  *
7  * Author:
8  *      Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *
10  * Platform file needed for the OMAP4 SMP. This file is based on arm
11  * realview smp platform.
12  * * Copyright (c) 2002 ARM Limited.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/smp_scu.h>
26 
27 #include "omap-secure.h"
28 #include "omap-wakeupgen.h"
29 #include <asm/cputype.h>
30 
31 #include "soc.h"
32 #include "iomap.h"
33 #include "common.h"
34 #include "clockdomain.h"
35 #include "pm.h"
36 
37 #define CPU_MASK		0xff0ffff0
38 #define CPU_CORTEX_A9		0x410FC090
39 #define CPU_CORTEX_A15		0x410FC0F0
40 
41 #define OMAP5_CORE_COUNT	0x2
42 
43 u16 pm44xx_errata;
44 
45 /* SCU base address */
46 static void __iomem *scu_base;
47 
48 static DEFINE_SPINLOCK(boot_lock);
49 
50 void __iomem *omap4_get_scu_base(void)
51 {
52 	return scu_base;
53 }
54 
55 static void __cpuinit omap4_secondary_init(unsigned int cpu)
56 {
57 	/*
58 	 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
59 	 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
60 	 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
61 	 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
62 	 * OMAP443X GP devices- SMP bit isn't accessible.
63 	 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
64 	 */
65 	if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
66 		omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
67 							4, 0, 0, 0, 0, 0);
68 
69 	/*
70 	 * If any interrupts are already enabled for the primary
71 	 * core (e.g. timer irq), then they will not have been enabled
72 	 * for us: do so
73 	 */
74 	gic_secondary_init(0);
75 
76 	/*
77 	 * Synchronise with the boot thread.
78 	 */
79 	spin_lock(&boot_lock);
80 	spin_unlock(&boot_lock);
81 }
82 
83 static int __cpuinit omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
84 {
85 	static struct clockdomain *cpu1_clkdm;
86 	static bool booted;
87 	void __iomem *base = omap_get_wakeupgen_base();
88 
89 	/*
90 	 * Set synchronisation state between this boot processor
91 	 * and the secondary one
92 	 */
93 	spin_lock(&boot_lock);
94 
95 	/*
96 	 * Update the AuxCoreBoot0 with boot state for secondary core.
97 	 * omap_secondary_startup() routine will hold the secondary core till
98 	 * the AuxCoreBoot1 register is updated with cpu state
99 	 * A barrier is added to ensure that write buffer is drained
100 	 */
101 	if (omap_secure_apis_support())
102 		omap_modify_auxcoreboot0(0x200, 0xfffffdff);
103 	else
104 		__raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0);
105 
106 	flush_cache_all();
107 	smp_wmb();
108 
109 	if (!cpu1_clkdm)
110 		cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
111 
112 	/*
113 	 * The SGI(Software Generated Interrupts) are not wakeup capable
114 	 * from low power states. This is known limitation on OMAP4 and
115 	 * needs to be worked around by using software forced clockdomain
116 	 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
117 	 * software force wakeup. The clockdomain is then put back to
118 	 * hardware supervised mode.
119 	 * More details can be found in OMAP4430 TRM - Version J
120 	 * Section :
121 	 *	4.3.4.2 Power States of CPU0 and CPU1
122 	 */
123 	if (booted) {
124 		/*
125 		 * GIC distributor control register has changed between
126 		 * CortexA9 r1pX and r2pX. The Control Register secure
127 		 * banked version is now composed of 2 bits:
128 		 * bit 0 == Secure Enable
129 		 * bit 1 == Non-Secure Enable
130 		 * The Non-Secure banked register has not changed
131 		 * Because the ROM Code is based on the r1pX GIC, the CPU1
132 		 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
133 		 * The workaround must be:
134 		 * 1) Before doing the CPU1 wakeup, CPU0 must disable
135 		 * the GIC distributor
136 		 * 2) CPU1 must re-enable the GIC distributor on
137 		 * it's wakeup path.
138 		 */
139 		if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
140 			local_irq_disable();
141 			gic_dist_disable();
142 		}
143 
144 		clkdm_wakeup(cpu1_clkdm);
145 		clkdm_allow_idle(cpu1_clkdm);
146 
147 		if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
148 			while (gic_dist_disabled()) {
149 				udelay(1);
150 				cpu_relax();
151 			}
152 			gic_timer_retrigger();
153 			local_irq_enable();
154 		}
155 	} else {
156 		dsb_sev();
157 		booted = true;
158 	}
159 
160 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
161 
162 	/*
163 	 * Now the secondary core is starting up let it run its
164 	 * calibrations, then wait for it to finish
165 	 */
166 	spin_unlock(&boot_lock);
167 
168 	return 0;
169 }
170 
171 static void __init wakeup_secondary(void)
172 {
173 	void *startup_addr = omap_secondary_startup;
174 	void __iomem *base = omap_get_wakeupgen_base();
175 
176 	if (cpu_is_omap446x()) {
177 		startup_addr = omap_secondary_startup_4460;
178 		pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
179 	}
180 
181 	/*
182 	 * Write the address of secondary startup routine into the
183 	 * AuxCoreBoot1 where ROM code will jump and start executing
184 	 * on secondary core once out of WFE
185 	 * A barrier is added to ensure that write buffer is drained
186 	 */
187 	if (omap_secure_apis_support())
188 		omap_auxcoreboot_addr(virt_to_phys(startup_addr));
189 	else
190 		__raw_writel(virt_to_phys(omap5_secondary_startup),
191 						base + OMAP_AUX_CORE_BOOT_1);
192 
193 	smp_wmb();
194 
195 	/*
196 	 * Send a 'sev' to wake the secondary core from WFE.
197 	 * Drain the outstanding writes to memory
198 	 */
199 	dsb_sev();
200 	mb();
201 }
202 
203 /*
204  * Initialise the CPU possible map early - this describes the CPUs
205  * which may be present or become present in the system.
206  */
207 static void __init omap4_smp_init_cpus(void)
208 {
209 	unsigned int i = 0, ncores = 1, cpu_id;
210 
211 	/* Use ARM cpuid check here, as SoC detection will not work so early */
212 	cpu_id = read_cpuid(CPUID_ID) & CPU_MASK;
213 	if (cpu_id == CPU_CORTEX_A9) {
214 		/*
215 		 * Currently we can't call ioremap here because
216 		 * SoC detection won't work until after init_early.
217 		 */
218 		scu_base =  OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
219 		BUG_ON(!scu_base);
220 		ncores = scu_get_core_count(scu_base);
221 	} else if (cpu_id == CPU_CORTEX_A15) {
222 		ncores = OMAP5_CORE_COUNT;
223 	}
224 
225 	/* sanity check */
226 	if (ncores > nr_cpu_ids) {
227 		pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
228 			ncores, nr_cpu_ids);
229 		ncores = nr_cpu_ids;
230 	}
231 
232 	for (i = 0; i < ncores; i++)
233 		set_cpu_possible(i, true);
234 }
235 
236 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
237 {
238 
239 	/*
240 	 * Initialise the SCU and wake up the secondary core using
241 	 * wakeup_secondary().
242 	 */
243 	if (scu_base)
244 		scu_enable(scu_base);
245 	wakeup_secondary();
246 }
247 
248 struct smp_operations omap4_smp_ops __initdata = {
249 	.smp_init_cpus		= omap4_smp_init_cpus,
250 	.smp_prepare_cpus	= omap4_smp_prepare_cpus,
251 	.smp_secondary_init	= omap4_secondary_init,
252 	.smp_boot_secondary	= omap4_boot_secondary,
253 #ifdef CONFIG_HOTPLUG_CPU
254 	.cpu_die		= omap4_cpu_die,
255 #endif
256 };
257