xref: /openbmc/linux/arch/arm/mach-omap2/omap-smp.c (revision 5104d265)
1 /*
2  * OMAP4 SMP source file. It contains platform specific fucntions
3  * needed for the linux smp kernel.
4  *
5  * Copyright (C) 2009 Texas Instruments, Inc.
6  *
7  * Author:
8  *      Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *
10  * Platform file needed for the OMAP4 SMP. This file is based on arm
11  * realview smp platform.
12  * * Copyright (c) 2002 ARM Limited.
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/irqchip/arm-gic.h>
23 
24 #include <asm/smp_scu.h>
25 
26 #include "omap-secure.h"
27 #include "omap-wakeupgen.h"
28 #include <asm/cputype.h>
29 
30 #include "soc.h"
31 #include "iomap.h"
32 #include "common.h"
33 #include "clockdomain.h"
34 #include "pm.h"
35 
36 #define CPU_MASK		0xff0ffff0
37 #define CPU_CORTEX_A9		0x410FC090
38 #define CPU_CORTEX_A15		0x410FC0F0
39 
40 #define OMAP5_CORE_COUNT	0x2
41 
42 u16 pm44xx_errata;
43 
44 /* SCU base address */
45 static void __iomem *scu_base;
46 
47 static DEFINE_SPINLOCK(boot_lock);
48 
49 void __iomem *omap4_get_scu_base(void)
50 {
51 	return scu_base;
52 }
53 
54 static void omap4_secondary_init(unsigned int cpu)
55 {
56 	/*
57 	 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
58 	 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
59 	 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
60 	 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
61 	 * OMAP443X GP devices- SMP bit isn't accessible.
62 	 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
63 	 */
64 	if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
65 		omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
66 							4, 0, 0, 0, 0, 0);
67 
68 	/*
69 	 * Synchronise with the boot thread.
70 	 */
71 	spin_lock(&boot_lock);
72 	spin_unlock(&boot_lock);
73 }
74 
75 static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
76 {
77 	static struct clockdomain *cpu1_clkdm;
78 	static bool booted;
79 	static struct powerdomain *cpu1_pwrdm;
80 	void __iomem *base = omap_get_wakeupgen_base();
81 
82 	/*
83 	 * Set synchronisation state between this boot processor
84 	 * and the secondary one
85 	 */
86 	spin_lock(&boot_lock);
87 
88 	/*
89 	 * Update the AuxCoreBoot0 with boot state for secondary core.
90 	 * omap4_secondary_startup() routine will hold the secondary core till
91 	 * the AuxCoreBoot1 register is updated with cpu state
92 	 * A barrier is added to ensure that write buffer is drained
93 	 */
94 	if (omap_secure_apis_support())
95 		omap_modify_auxcoreboot0(0x200, 0xfffffdff);
96 	else
97 		__raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0);
98 
99 	if (!cpu1_clkdm && !cpu1_pwrdm) {
100 		cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
101 		cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm");
102 	}
103 
104 	/*
105 	 * The SGI(Software Generated Interrupts) are not wakeup capable
106 	 * from low power states. This is known limitation on OMAP4 and
107 	 * needs to be worked around by using software forced clockdomain
108 	 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
109 	 * software force wakeup. The clockdomain is then put back to
110 	 * hardware supervised mode.
111 	 * More details can be found in OMAP4430 TRM - Version J
112 	 * Section :
113 	 *	4.3.4.2 Power States of CPU0 and CPU1
114 	 */
115 	if (booted && cpu1_pwrdm && cpu1_clkdm) {
116 		/*
117 		 * GIC distributor control register has changed between
118 		 * CortexA9 r1pX and r2pX. The Control Register secure
119 		 * banked version is now composed of 2 bits:
120 		 * bit 0 == Secure Enable
121 		 * bit 1 == Non-Secure Enable
122 		 * The Non-Secure banked register has not changed
123 		 * Because the ROM Code is based on the r1pX GIC, the CPU1
124 		 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
125 		 * The workaround must be:
126 		 * 1) Before doing the CPU1 wakeup, CPU0 must disable
127 		 * the GIC distributor
128 		 * 2) CPU1 must re-enable the GIC distributor on
129 		 * it's wakeup path.
130 		 */
131 		if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
132 			local_irq_disable();
133 			gic_dist_disable();
134 		}
135 
136 		/*
137 		 * Ensure that CPU power state is set to ON to avoid CPU
138 		 * powerdomain transition on wfi
139 		 */
140 		clkdm_wakeup(cpu1_clkdm);
141 		omap_set_pwrdm_state(cpu1_pwrdm, PWRDM_POWER_ON);
142 		clkdm_allow_idle(cpu1_clkdm);
143 
144 		if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
145 			while (gic_dist_disabled()) {
146 				udelay(1);
147 				cpu_relax();
148 			}
149 			gic_timer_retrigger();
150 			local_irq_enable();
151 		}
152 	} else {
153 		dsb_sev();
154 		booted = true;
155 	}
156 
157 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
158 
159 	/*
160 	 * Now the secondary core is starting up let it run its
161 	 * calibrations, then wait for it to finish
162 	 */
163 	spin_unlock(&boot_lock);
164 
165 	return 0;
166 }
167 
168 /*
169  * Initialise the CPU possible map early - this describes the CPUs
170  * which may be present or become present in the system.
171  */
172 static void __init omap4_smp_init_cpus(void)
173 {
174 	unsigned int i = 0, ncores = 1, cpu_id;
175 
176 	/* Use ARM cpuid check here, as SoC detection will not work so early */
177 	cpu_id = read_cpuid_id() & CPU_MASK;
178 	if (cpu_id == CPU_CORTEX_A9) {
179 		/*
180 		 * Currently we can't call ioremap here because
181 		 * SoC detection won't work until after init_early.
182 		 */
183 		scu_base =  OMAP2_L4_IO_ADDRESS(scu_a9_get_base());
184 		BUG_ON(!scu_base);
185 		ncores = scu_get_core_count(scu_base);
186 	} else if (cpu_id == CPU_CORTEX_A15) {
187 		ncores = OMAP5_CORE_COUNT;
188 	}
189 
190 	/* sanity check */
191 	if (ncores > nr_cpu_ids) {
192 		pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
193 			ncores, nr_cpu_ids);
194 		ncores = nr_cpu_ids;
195 	}
196 
197 	for (i = 0; i < ncores; i++)
198 		set_cpu_possible(i, true);
199 }
200 
201 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
202 {
203 	void *startup_addr = omap4_secondary_startup;
204 	void __iomem *base = omap_get_wakeupgen_base();
205 
206 	/*
207 	 * Initialise the SCU and wake up the secondary core using
208 	 * wakeup_secondary().
209 	 */
210 	if (scu_base)
211 		scu_enable(scu_base);
212 
213 	if (cpu_is_omap446x()) {
214 		startup_addr = omap4460_secondary_startup;
215 		pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
216 	}
217 
218 	/*
219 	 * Write the address of secondary startup routine into the
220 	 * AuxCoreBoot1 where ROM code will jump and start executing
221 	 * on secondary core once out of WFE
222 	 * A barrier is added to ensure that write buffer is drained
223 	 */
224 	if (omap_secure_apis_support())
225 		omap_auxcoreboot_addr(virt_to_phys(startup_addr));
226 	else
227 		__raw_writel(virt_to_phys(omap5_secondary_startup),
228 						base + OMAP_AUX_CORE_BOOT_1);
229 
230 }
231 
232 struct smp_operations omap4_smp_ops __initdata = {
233 	.smp_init_cpus		= omap4_smp_init_cpus,
234 	.smp_prepare_cpus	= omap4_smp_prepare_cpus,
235 	.smp_secondary_init	= omap4_secondary_init,
236 	.smp_boot_secondary	= omap4_boot_secondary,
237 #ifdef CONFIG_HOTPLUG_CPU
238 	.cpu_die		= omap4_cpu_die,
239 #endif
240 };
241