1 /* 2 * OMAP4 SMP source file. It contains platform specific functions 3 * needed for the linux smp kernel. 4 * 5 * Copyright (C) 2009 Texas Instruments, Inc. 6 * 7 * Author: 8 * Santosh Shilimkar <santosh.shilimkar@ti.com> 9 * 10 * Platform file needed for the OMAP4 SMP. This file is based on arm 11 * realview smp platform. 12 * * Copyright (c) 2002 ARM Limited. 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/smp.h> 21 #include <linux/io.h> 22 #include <linux/irqchip/arm-gic.h> 23 24 #include <asm/smp_scu.h> 25 #include <asm/virt.h> 26 27 #include "omap-secure.h" 28 #include "omap-wakeupgen.h" 29 #include <asm/cputype.h> 30 31 #include "soc.h" 32 #include "iomap.h" 33 #include "common.h" 34 #include "clockdomain.h" 35 #include "pm.h" 36 37 #define CPU_MASK 0xff0ffff0 38 #define CPU_CORTEX_A9 0x410FC090 39 #define CPU_CORTEX_A15 0x410FC0F0 40 41 #define OMAP5_CORE_COUNT 0x2 42 43 /* SCU base address */ 44 static void __iomem *scu_base; 45 46 static DEFINE_SPINLOCK(boot_lock); 47 48 void __iomem *omap4_get_scu_base(void) 49 { 50 return scu_base; 51 } 52 53 static void omap4_secondary_init(unsigned int cpu) 54 { 55 /* 56 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device. 57 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA 58 * init and for CPU1, a secure PPA API provided. CPU0 must be ON 59 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+. 60 * OMAP443X GP devices- SMP bit isn't accessible. 61 * OMAP446X GP devices - SMP bit access is enabled on both CPUs. 62 */ 63 if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP)) 64 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX, 65 4, 0, 0, 0, 0, 0); 66 67 /* 68 * Configure the CNTFRQ register for the secondary cpu's which 69 * indicates the frequency of the cpu local timers. 70 */ 71 if (soc_is_omap54xx() || soc_is_dra7xx()) 72 set_cntfreq(); 73 74 /* 75 * Synchronise with the boot thread. 76 */ 77 spin_lock(&boot_lock); 78 spin_unlock(&boot_lock); 79 } 80 81 static int omap4_boot_secondary(unsigned int cpu, struct task_struct *idle) 82 { 83 static struct clockdomain *cpu1_clkdm; 84 static bool booted; 85 static struct powerdomain *cpu1_pwrdm; 86 void __iomem *base = omap_get_wakeupgen_base(); 87 88 /* 89 * Set synchronisation state between this boot processor 90 * and the secondary one 91 */ 92 spin_lock(&boot_lock); 93 94 /* 95 * Update the AuxCoreBoot0 with boot state for secondary core. 96 * omap4_secondary_startup() routine will hold the secondary core till 97 * the AuxCoreBoot1 register is updated with cpu state 98 * A barrier is added to ensure that write buffer is drained 99 */ 100 if (omap_secure_apis_support()) 101 omap_modify_auxcoreboot0(0x200, 0xfffffdff); 102 else 103 writel_relaxed(0x20, base + OMAP_AUX_CORE_BOOT_0); 104 105 if (!cpu1_clkdm && !cpu1_pwrdm) { 106 cpu1_clkdm = clkdm_lookup("mpu1_clkdm"); 107 cpu1_pwrdm = pwrdm_lookup("cpu1_pwrdm"); 108 } 109 110 /* 111 * The SGI(Software Generated Interrupts) are not wakeup capable 112 * from low power states. This is known limitation on OMAP4 and 113 * needs to be worked around by using software forced clockdomain 114 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to 115 * software force wakeup. The clockdomain is then put back to 116 * hardware supervised mode. 117 * More details can be found in OMAP4430 TRM - Version J 118 * Section : 119 * 4.3.4.2 Power States of CPU0 and CPU1 120 */ 121 if (booted && cpu1_pwrdm && cpu1_clkdm) { 122 /* 123 * GIC distributor control register has changed between 124 * CortexA9 r1pX and r2pX. The Control Register secure 125 * banked version is now composed of 2 bits: 126 * bit 0 == Secure Enable 127 * bit 1 == Non-Secure Enable 128 * The Non-Secure banked register has not changed 129 * Because the ROM Code is based on the r1pX GIC, the CPU1 130 * GIC restoration will cause a problem to CPU0 Non-Secure SW. 131 * The workaround must be: 132 * 1) Before doing the CPU1 wakeup, CPU0 must disable 133 * the GIC distributor 134 * 2) CPU1 must re-enable the GIC distributor on 135 * it's wakeup path. 136 */ 137 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) { 138 local_irq_disable(); 139 gic_dist_disable(); 140 } 141 142 /* 143 * Ensure that CPU power state is set to ON to avoid CPU 144 * powerdomain transition on wfi 145 */ 146 clkdm_wakeup_nolock(cpu1_clkdm); 147 pwrdm_set_next_pwrst(cpu1_pwrdm, PWRDM_POWER_ON); 148 clkdm_allow_idle_nolock(cpu1_clkdm); 149 150 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) { 151 while (gic_dist_disabled()) { 152 udelay(1); 153 cpu_relax(); 154 } 155 gic_timer_retrigger(); 156 local_irq_enable(); 157 } 158 } else { 159 dsb_sev(); 160 booted = true; 161 } 162 163 arch_send_wakeup_ipi_mask(cpumask_of(cpu)); 164 165 /* 166 * Now the secondary core is starting up let it run its 167 * calibrations, then wait for it to finish 168 */ 169 spin_unlock(&boot_lock); 170 171 return 0; 172 } 173 174 /* 175 * Initialise the CPU possible map early - this describes the CPUs 176 * which may be present or become present in the system. 177 */ 178 static void __init omap4_smp_init_cpus(void) 179 { 180 unsigned int i = 0, ncores = 1, cpu_id; 181 182 /* Use ARM cpuid check here, as SoC detection will not work so early */ 183 cpu_id = read_cpuid_id() & CPU_MASK; 184 if (cpu_id == CPU_CORTEX_A9) { 185 /* 186 * Currently we can't call ioremap here because 187 * SoC detection won't work until after init_early. 188 */ 189 scu_base = OMAP2_L4_IO_ADDRESS(scu_a9_get_base()); 190 BUG_ON(!scu_base); 191 ncores = scu_get_core_count(scu_base); 192 } else if (cpu_id == CPU_CORTEX_A15) { 193 ncores = OMAP5_CORE_COUNT; 194 } 195 196 /* sanity check */ 197 if (ncores > nr_cpu_ids) { 198 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n", 199 ncores, nr_cpu_ids); 200 ncores = nr_cpu_ids; 201 } 202 203 for (i = 0; i < ncores; i++) 204 set_cpu_possible(i, true); 205 } 206 207 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus) 208 { 209 void *startup_addr = omap4_secondary_startup; 210 void __iomem *base = omap_get_wakeupgen_base(); 211 212 /* 213 * Initialise the SCU and wake up the secondary core using 214 * wakeup_secondary(). 215 */ 216 if (scu_base) 217 scu_enable(scu_base); 218 219 if (cpu_is_omap446x()) 220 startup_addr = omap4460_secondary_startup; 221 222 /* 223 * Write the address of secondary startup routine into the 224 * AuxCoreBoot1 where ROM code will jump and start executing 225 * on secondary core once out of WFE 226 * A barrier is added to ensure that write buffer is drained 227 */ 228 if (omap_secure_apis_support()) 229 omap_auxcoreboot_addr(virt_to_phys(startup_addr)); 230 else 231 /* 232 * If the boot CPU is in HYP mode then start secondary 233 * CPU in HYP mode as well. 234 */ 235 if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE) 236 writel_relaxed(virt_to_phys(omap5_secondary_hyp_startup), 237 base + OMAP_AUX_CORE_BOOT_1); 238 else 239 writel_relaxed(virt_to_phys(omap5_secondary_startup), 240 base + OMAP_AUX_CORE_BOOT_1); 241 242 } 243 244 const struct smp_operations omap4_smp_ops __initconst = { 245 .smp_init_cpus = omap4_smp_init_cpus, 246 .smp_prepare_cpus = omap4_smp_prepare_cpus, 247 .smp_secondary_init = omap4_secondary_init, 248 .smp_boot_secondary = omap4_boot_secondary, 249 #ifdef CONFIG_HOTPLUG_CPU 250 .cpu_die = omap4_cpu_die, 251 #endif 252 }; 253