1 /* 2 * linux/arch/arm/mach-omap2/clock.c 3 * 4 * Copyright (C) 2005-2008 Texas Instruments, Inc. 5 * Copyright (C) 2004-2008 Nokia Corporation 6 * 7 * Contacts: 8 * Richard Woodruff <r-woodruff2@ti.com> 9 * Paul Walmsley 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 */ 15 #undef DEBUG 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/device.h> 20 #include <linux/list.h> 21 #include <linux/errno.h> 22 #include <linux/delay.h> 23 #include <linux/clk.h> 24 #include <linux/io.h> 25 #include <linux/bitops.h> 26 27 #include <mach/clock.h> 28 #include <mach/clockdomain.h> 29 #include <mach/sram.h> 30 #include <mach/cpu.h> 31 #include <asm/div64.h> 32 33 #include "memory.h" 34 #include "sdrc.h" 35 #include "clock.h" 36 #include "prm.h" 37 #include "prm-regbits-24xx.h" 38 #include "cm.h" 39 #include "cm-regbits-24xx.h" 40 #include "cm-regbits-34xx.h" 41 42 #define MAX_CLOCK_ENABLE_WAIT 100000 43 44 /* DPLL rate rounding: minimum DPLL multiplier, divider values */ 45 #define DPLL_MIN_MULTIPLIER 1 46 #define DPLL_MIN_DIVIDER 1 47 48 /* Possible error results from _dpll_test_mult */ 49 #define DPLL_MULT_UNDERFLOW (1 << 0) 50 51 /* 52 * Scale factor to mitigate roundoff errors in DPLL rate rounding. 53 * The higher the scale factor, the greater the risk of arithmetic overflow, 54 * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR 55 * must be a power of DPLL_SCALE_BASE. 56 */ 57 #define DPLL_SCALE_FACTOR 64 58 #define DPLL_SCALE_BASE 2 59 #define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ 60 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) 61 62 u8 cpu_mask; 63 64 /*------------------------------------------------------------------------- 65 * OMAP2/3 specific clock functions 66 *-------------------------------------------------------------------------*/ 67 68 /** 69 * omap2_init_clk_clkdm - look up a clockdomain name, store pointer in clk 70 * @clk: OMAP clock struct ptr to use 71 * 72 * Convert a clockdomain name stored in a struct clk 'clk' into a 73 * clockdomain pointer, and save it into the struct clk. Intended to be 74 * called during clk_register(). No return value. 75 */ 76 void omap2_init_clk_clkdm(struct clk *clk) 77 { 78 struct clockdomain *clkdm; 79 80 if (!clk->clkdm_name) 81 return; 82 83 clkdm = clkdm_lookup(clk->clkdm_name); 84 if (clkdm) { 85 pr_debug("clock: associated clk %s to clkdm %s\n", 86 clk->name, clk->clkdm_name); 87 clk->clkdm = clkdm; 88 } else { 89 pr_debug("clock: could not associate clk %s to " 90 "clkdm %s\n", clk->name, clk->clkdm_name); 91 } 92 } 93 94 /** 95 * omap2_init_clksel_parent - set a clksel clk's parent field from the hardware 96 * @clk: OMAP clock struct ptr to use 97 * 98 * Given a pointer to a source-selectable struct clk, read the hardware 99 * register and determine what its parent is currently set to. Update the 100 * clk->parent field with the appropriate clk ptr. 101 */ 102 void omap2_init_clksel_parent(struct clk *clk) 103 { 104 const struct clksel *clks; 105 const struct clksel_rate *clkr; 106 u32 r, found = 0; 107 108 if (!clk->clksel) 109 return; 110 111 r = __raw_readl(clk->clksel_reg) & clk->clksel_mask; 112 r >>= __ffs(clk->clksel_mask); 113 114 for (clks = clk->clksel; clks->parent && !found; clks++) { 115 for (clkr = clks->rates; clkr->div && !found; clkr++) { 116 if ((clkr->flags & cpu_mask) && (clkr->val == r)) { 117 if (clk->parent != clks->parent) { 118 pr_debug("clock: inited %s parent " 119 "to %s (was %s)\n", 120 clk->name, clks->parent->name, 121 ((clk->parent) ? 122 clk->parent->name : "NULL")); 123 clk->parent = clks->parent; 124 }; 125 found = 1; 126 } 127 } 128 } 129 130 if (!found) 131 printk(KERN_ERR "clock: init parent: could not find " 132 "regval %0x for clock %s\n", r, clk->name); 133 134 return; 135 } 136 137 /* Returns the DPLL rate */ 138 u32 omap2_get_dpll_rate(struct clk *clk) 139 { 140 long long dpll_clk; 141 u32 dpll_mult, dpll_div, dpll; 142 struct dpll_data *dd; 143 144 dd = clk->dpll_data; 145 /* REVISIT: What do we return on error? */ 146 if (!dd) 147 return 0; 148 149 dpll = __raw_readl(dd->mult_div1_reg); 150 dpll_mult = dpll & dd->mult_mask; 151 dpll_mult >>= __ffs(dd->mult_mask); 152 dpll_div = dpll & dd->div1_mask; 153 dpll_div >>= __ffs(dd->div1_mask); 154 155 dpll_clk = (long long)clk->parent->rate * dpll_mult; 156 do_div(dpll_clk, dpll_div + 1); 157 158 return dpll_clk; 159 } 160 161 /* 162 * Used for clocks that have the same value as the parent clock, 163 * divided by some factor 164 */ 165 void omap2_fixed_divisor_recalc(struct clk *clk) 166 { 167 WARN_ON(!clk->fixed_div); 168 169 clk->rate = clk->parent->rate / clk->fixed_div; 170 171 if (clk->flags & RATE_PROPAGATES) 172 propagate_rate(clk); 173 } 174 175 /** 176 * omap2_wait_clock_ready - wait for clock to enable 177 * @reg: physical address of clock IDLEST register 178 * @mask: value to mask against to determine if the clock is active 179 * @name: name of the clock (for printk) 180 * 181 * Returns 1 if the clock enabled in time, or 0 if it failed to enable 182 * in roughly MAX_CLOCK_ENABLE_WAIT microseconds. 183 */ 184 int omap2_wait_clock_ready(void __iomem *reg, u32 mask, const char *name) 185 { 186 int i = 0; 187 int ena = 0; 188 189 /* 190 * 24xx uses 0 to indicate not ready, and 1 to indicate ready. 191 * 34xx reverses this, just to keep us on our toes 192 */ 193 if (cpu_mask & (RATE_IN_242X | RATE_IN_243X)) { 194 ena = mask; 195 } else if (cpu_mask & RATE_IN_343X) { 196 ena = 0; 197 } 198 199 /* Wait for lock */ 200 while (((__raw_readl(reg) & mask) != ena) && 201 (i++ < MAX_CLOCK_ENABLE_WAIT)) { 202 udelay(1); 203 } 204 205 if (i < MAX_CLOCK_ENABLE_WAIT) 206 pr_debug("Clock %s stable after %d loops\n", name, i); 207 else 208 printk(KERN_ERR "Clock %s didn't enable in %d tries\n", 209 name, MAX_CLOCK_ENABLE_WAIT); 210 211 212 return (i < MAX_CLOCK_ENABLE_WAIT) ? 1 : 0; 213 }; 214 215 216 /* 217 * Note: We don't need special code here for INVERT_ENABLE 218 * for the time being since INVERT_ENABLE only applies to clocks enabled by 219 * CM_CLKEN_PLL 220 */ 221 static void omap2_clk_wait_ready(struct clk *clk) 222 { 223 void __iomem *reg, *other_reg, *st_reg; 224 u32 bit; 225 226 /* 227 * REVISIT: This code is pretty ugly. It would be nice to generalize 228 * it and pull it into struct clk itself somehow. 229 */ 230 reg = clk->enable_reg; 231 if ((((u32)reg & 0xff) >= CM_FCLKEN1) && 232 (((u32)reg & 0xff) <= OMAP24XX_CM_FCLKEN2)) 233 other_reg = (void __iomem *)(((u32)reg & ~0xf0) | 0x10); /* CM_ICLKEN* */ 234 else if ((((u32)reg & 0xff) >= CM_ICLKEN1) && 235 (((u32)reg & 0xff) <= OMAP24XX_CM_ICLKEN4)) 236 other_reg = (void __iomem *)(((u32)reg & ~0xf0) | 0x00); /* CM_FCLKEN* */ 237 else 238 return; 239 240 /* REVISIT: What are the appropriate exclusions for 34XX? */ 241 /* No check for DSS or cam clocks */ 242 if (cpu_is_omap24xx() && ((u32)reg & 0x0f) == 0) { /* CM_{F,I}CLKEN1 */ 243 if (clk->enable_bit == OMAP24XX_EN_DSS2_SHIFT || 244 clk->enable_bit == OMAP24XX_EN_DSS1_SHIFT || 245 clk->enable_bit == OMAP24XX_EN_CAM_SHIFT) 246 return; 247 } 248 249 /* REVISIT: What are the appropriate exclusions for 34XX? */ 250 /* OMAP3: ignore DSS-mod clocks */ 251 if (cpu_is_omap34xx() && 252 (((u32)reg & ~0xff) == (u32)OMAP_CM_REGADDR(OMAP3430_DSS_MOD, 0) || 253 ((((u32)reg & ~0xff) == (u32)OMAP_CM_REGADDR(CORE_MOD, 0)) && 254 clk->enable_bit == OMAP3430_EN_SSI_SHIFT))) 255 return; 256 257 /* Check if both functional and interface clocks 258 * are running. */ 259 bit = 1 << clk->enable_bit; 260 if (!(__raw_readl(other_reg) & bit)) 261 return; 262 st_reg = (void __iomem *)(((u32)other_reg & ~0xf0) | 0x20); /* CM_IDLEST* */ 263 264 omap2_wait_clock_ready(st_reg, bit, clk->name); 265 } 266 267 /* Enables clock without considering parent dependencies or use count 268 * REVISIT: Maybe change this to use clk->enable like on omap1? 269 */ 270 int _omap2_clk_enable(struct clk *clk) 271 { 272 u32 regval32; 273 274 if (clk->flags & (ALWAYS_ENABLED | PARENT_CONTROLS_CLOCK)) 275 return 0; 276 277 if (clk->enable) 278 return clk->enable(clk); 279 280 if (unlikely(clk->enable_reg == NULL)) { 281 printk(KERN_ERR "clock.c: Enable for %s without enable code\n", 282 clk->name); 283 return 0; /* REVISIT: -EINVAL */ 284 } 285 286 regval32 = __raw_readl(clk->enable_reg); 287 if (clk->flags & INVERT_ENABLE) 288 regval32 &= ~(1 << clk->enable_bit); 289 else 290 regval32 |= (1 << clk->enable_bit); 291 __raw_writel(regval32, clk->enable_reg); 292 wmb(); 293 294 omap2_clk_wait_ready(clk); 295 296 return 0; 297 } 298 299 /* Disables clock without considering parent dependencies or use count */ 300 void _omap2_clk_disable(struct clk *clk) 301 { 302 u32 regval32; 303 304 if (clk->flags & (ALWAYS_ENABLED | PARENT_CONTROLS_CLOCK)) 305 return; 306 307 if (clk->disable) { 308 clk->disable(clk); 309 return; 310 } 311 312 if (clk->enable_reg == NULL) { 313 /* 314 * 'Independent' here refers to a clock which is not 315 * controlled by its parent. 316 */ 317 printk(KERN_ERR "clock: clk_disable called on independent " 318 "clock %s which has no enable_reg\n", clk->name); 319 return; 320 } 321 322 regval32 = __raw_readl(clk->enable_reg); 323 if (clk->flags & INVERT_ENABLE) 324 regval32 |= (1 << clk->enable_bit); 325 else 326 regval32 &= ~(1 << clk->enable_bit); 327 __raw_writel(regval32, clk->enable_reg); 328 wmb(); 329 } 330 331 void omap2_clk_disable(struct clk *clk) 332 { 333 if (clk->usecount > 0 && !(--clk->usecount)) { 334 _omap2_clk_disable(clk); 335 if (likely((u32)clk->parent)) 336 omap2_clk_disable(clk->parent); 337 if (clk->clkdm) 338 omap2_clkdm_clk_disable(clk->clkdm, clk); 339 340 } 341 } 342 343 int omap2_clk_enable(struct clk *clk) 344 { 345 int ret = 0; 346 347 if (clk->usecount++ == 0) { 348 if (likely((u32)clk->parent)) 349 ret = omap2_clk_enable(clk->parent); 350 351 if (unlikely(ret != 0)) { 352 clk->usecount--; 353 return ret; 354 } 355 356 if (clk->clkdm) 357 omap2_clkdm_clk_enable(clk->clkdm, clk); 358 359 ret = _omap2_clk_enable(clk); 360 361 if (unlikely(ret != 0)) { 362 if (clk->clkdm) 363 omap2_clkdm_clk_disable(clk->clkdm, clk); 364 365 if (clk->parent) { 366 omap2_clk_disable(clk->parent); 367 clk->usecount--; 368 } 369 } 370 } 371 372 return ret; 373 } 374 375 /* 376 * Used for clocks that are part of CLKSEL_xyz governed clocks. 377 * REVISIT: Maybe change to use clk->enable() functions like on omap1? 378 */ 379 void omap2_clksel_recalc(struct clk *clk) 380 { 381 u32 div = 0; 382 383 pr_debug("clock: recalc'ing clksel clk %s\n", clk->name); 384 385 div = omap2_clksel_get_divisor(clk); 386 if (div == 0) 387 return; 388 389 if (unlikely(clk->rate == clk->parent->rate / div)) 390 return; 391 clk->rate = clk->parent->rate / div; 392 393 pr_debug("clock: new clock rate is %ld (div %d)\n", clk->rate, div); 394 395 if (unlikely(clk->flags & RATE_PROPAGATES)) 396 propagate_rate(clk); 397 } 398 399 /** 400 * omap2_get_clksel_by_parent - return clksel struct for a given clk & parent 401 * @clk: OMAP struct clk ptr to inspect 402 * @src_clk: OMAP struct clk ptr of the parent clk to search for 403 * 404 * Scan the struct clksel array associated with the clock to find 405 * the element associated with the supplied parent clock address. 406 * Returns a pointer to the struct clksel on success or NULL on error. 407 */ 408 const struct clksel *omap2_get_clksel_by_parent(struct clk *clk, 409 struct clk *src_clk) 410 { 411 const struct clksel *clks; 412 413 if (!clk->clksel) 414 return NULL; 415 416 for (clks = clk->clksel; clks->parent; clks++) { 417 if (clks->parent == src_clk) 418 break; /* Found the requested parent */ 419 } 420 421 if (!clks->parent) { 422 printk(KERN_ERR "clock: Could not find parent clock %s in " 423 "clksel array of clock %s\n", src_clk->name, 424 clk->name); 425 return NULL; 426 } 427 428 return clks; 429 } 430 431 /** 432 * omap2_clksel_round_rate_div - find divisor for the given clock and rate 433 * @clk: OMAP struct clk to use 434 * @target_rate: desired clock rate 435 * @new_div: ptr to where we should store the divisor 436 * 437 * Finds 'best' divider value in an array based on the source and target 438 * rates. The divider array must be sorted with smallest divider first. 439 * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT, 440 * they are only settable as part of virtual_prcm set. 441 * 442 * Returns the rounded clock rate or returns 0xffffffff on error. 443 */ 444 u32 omap2_clksel_round_rate_div(struct clk *clk, unsigned long target_rate, 445 u32 *new_div) 446 { 447 unsigned long test_rate; 448 const struct clksel *clks; 449 const struct clksel_rate *clkr; 450 u32 last_div = 0; 451 452 printk(KERN_INFO "clock: clksel_round_rate_div: %s target_rate %ld\n", 453 clk->name, target_rate); 454 455 *new_div = 1; 456 457 clks = omap2_get_clksel_by_parent(clk, clk->parent); 458 if (clks == NULL) 459 return ~0; 460 461 for (clkr = clks->rates; clkr->div; clkr++) { 462 if (!(clkr->flags & cpu_mask)) 463 continue; 464 465 /* Sanity check */ 466 if (clkr->div <= last_div) 467 printk(KERN_ERR "clock: clksel_rate table not sorted " 468 "for clock %s", clk->name); 469 470 last_div = clkr->div; 471 472 test_rate = clk->parent->rate / clkr->div; 473 474 if (test_rate <= target_rate) 475 break; /* found it */ 476 } 477 478 if (!clkr->div) { 479 printk(KERN_ERR "clock: Could not find divisor for target " 480 "rate %ld for clock %s parent %s\n", target_rate, 481 clk->name, clk->parent->name); 482 return ~0; 483 } 484 485 *new_div = clkr->div; 486 487 printk(KERN_INFO "clock: new_div = %d, new_rate = %ld\n", *new_div, 488 (clk->parent->rate / clkr->div)); 489 490 return (clk->parent->rate / clkr->div); 491 } 492 493 /** 494 * omap2_clksel_round_rate - find rounded rate for the given clock and rate 495 * @clk: OMAP struct clk to use 496 * @target_rate: desired clock rate 497 * 498 * Compatibility wrapper for OMAP clock framework 499 * Finds best target rate based on the source clock and possible dividers. 500 * rates. The divider array must be sorted with smallest divider first. 501 * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT, 502 * they are only settable as part of virtual_prcm set. 503 * 504 * Returns the rounded clock rate or returns 0xffffffff on error. 505 */ 506 long omap2_clksel_round_rate(struct clk *clk, unsigned long target_rate) 507 { 508 u32 new_div; 509 510 return omap2_clksel_round_rate_div(clk, target_rate, &new_div); 511 } 512 513 514 /* Given a clock and a rate apply a clock specific rounding function */ 515 long omap2_clk_round_rate(struct clk *clk, unsigned long rate) 516 { 517 if (clk->round_rate != NULL) 518 return clk->round_rate(clk, rate); 519 520 if (clk->flags & RATE_FIXED) 521 printk(KERN_ERR "clock: generic omap2_clk_round_rate called " 522 "on fixed-rate clock %s\n", clk->name); 523 524 return clk->rate; 525 } 526 527 /** 528 * omap2_clksel_to_divisor() - turn clksel field value into integer divider 529 * @clk: OMAP struct clk to use 530 * @field_val: register field value to find 531 * 532 * Given a struct clk of a rate-selectable clksel clock, and a register field 533 * value to search for, find the corresponding clock divisor. The register 534 * field value should be pre-masked and shifted down so the LSB is at bit 0 535 * before calling. Returns 0 on error 536 */ 537 u32 omap2_clksel_to_divisor(struct clk *clk, u32 field_val) 538 { 539 const struct clksel *clks; 540 const struct clksel_rate *clkr; 541 542 clks = omap2_get_clksel_by_parent(clk, clk->parent); 543 if (clks == NULL) 544 return 0; 545 546 for (clkr = clks->rates; clkr->div; clkr++) { 547 if ((clkr->flags & cpu_mask) && (clkr->val == field_val)) 548 break; 549 } 550 551 if (!clkr->div) { 552 printk(KERN_ERR "clock: Could not find fieldval %d for " 553 "clock %s parent %s\n", field_val, clk->name, 554 clk->parent->name); 555 return 0; 556 } 557 558 return clkr->div; 559 } 560 561 /** 562 * omap2_divisor_to_clksel() - turn clksel integer divisor into a field value 563 * @clk: OMAP struct clk to use 564 * @div: integer divisor to search for 565 * 566 * Given a struct clk of a rate-selectable clksel clock, and a clock divisor, 567 * find the corresponding register field value. The return register value is 568 * the value before left-shifting. Returns 0xffffffff on error 569 */ 570 u32 omap2_divisor_to_clksel(struct clk *clk, u32 div) 571 { 572 const struct clksel *clks; 573 const struct clksel_rate *clkr; 574 575 /* should never happen */ 576 WARN_ON(div == 0); 577 578 clks = omap2_get_clksel_by_parent(clk, clk->parent); 579 if (clks == NULL) 580 return 0; 581 582 for (clkr = clks->rates; clkr->div; clkr++) { 583 if ((clkr->flags & cpu_mask) && (clkr->div == div)) 584 break; 585 } 586 587 if (!clkr->div) { 588 printk(KERN_ERR "clock: Could not find divisor %d for " 589 "clock %s parent %s\n", div, clk->name, 590 clk->parent->name); 591 return 0; 592 } 593 594 return clkr->val; 595 } 596 597 /** 598 * omap2_get_clksel - find clksel register addr & field mask for a clk 599 * @clk: struct clk to use 600 * @field_mask: ptr to u32 to store the register field mask 601 * 602 * Returns the address of the clksel register upon success or NULL on error. 603 */ 604 void __iomem *omap2_get_clksel(struct clk *clk, u32 *field_mask) 605 { 606 if (unlikely((clk->clksel_reg == NULL) || (clk->clksel_mask == NULL))) 607 return NULL; 608 609 *field_mask = clk->clksel_mask; 610 611 return clk->clksel_reg; 612 } 613 614 /** 615 * omap2_clksel_get_divisor - get current divider applied to parent clock. 616 * @clk: OMAP struct clk to use. 617 * 618 * Returns the integer divisor upon success or 0 on error. 619 */ 620 u32 omap2_clksel_get_divisor(struct clk *clk) 621 { 622 u32 field_mask, field_val; 623 void __iomem *div_addr; 624 625 div_addr = omap2_get_clksel(clk, &field_mask); 626 if (div_addr == NULL) 627 return 0; 628 629 field_val = __raw_readl(div_addr) & field_mask; 630 field_val >>= __ffs(field_mask); 631 632 return omap2_clksel_to_divisor(clk, field_val); 633 } 634 635 int omap2_clksel_set_rate(struct clk *clk, unsigned long rate) 636 { 637 u32 field_mask, field_val, reg_val, validrate, new_div = 0; 638 void __iomem *div_addr; 639 640 validrate = omap2_clksel_round_rate_div(clk, rate, &new_div); 641 if (validrate != rate) 642 return -EINVAL; 643 644 div_addr = omap2_get_clksel(clk, &field_mask); 645 if (div_addr == NULL) 646 return -EINVAL; 647 648 field_val = omap2_divisor_to_clksel(clk, new_div); 649 if (field_val == ~0) 650 return -EINVAL; 651 652 reg_val = __raw_readl(div_addr); 653 reg_val &= ~field_mask; 654 reg_val |= (field_val << __ffs(field_mask)); 655 __raw_writel(reg_val, div_addr); 656 wmb(); 657 658 clk->rate = clk->parent->rate / new_div; 659 660 if (clk->flags & DELAYED_APP && cpu_is_omap24xx()) { 661 prm_write_mod_reg(OMAP24XX_VALID_CONFIG, 662 OMAP24XX_GR_MOD, OMAP24XX_PRCM_CLKCFG_CTRL_OFFSET); 663 wmb(); 664 } 665 666 return 0; 667 } 668 669 670 /* Set the clock rate for a clock source */ 671 int omap2_clk_set_rate(struct clk *clk, unsigned long rate) 672 { 673 int ret = -EINVAL; 674 675 pr_debug("clock: set_rate for clock %s to rate %ld\n", clk->name, rate); 676 677 /* CONFIG_PARTICIPANT clocks are changed only in sets via the 678 rate table mechanism, driven by mpu_speed */ 679 if (clk->flags & CONFIG_PARTICIPANT) 680 return -EINVAL; 681 682 /* dpll_ck, core_ck, virt_prcm_set; plus all clksel clocks */ 683 if (clk->set_rate != NULL) 684 ret = clk->set_rate(clk, rate); 685 686 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES))) 687 propagate_rate(clk); 688 689 return ret; 690 } 691 692 /* 693 * Converts encoded control register address into a full address 694 * On error, *src_addr will be returned as 0. 695 */ 696 static u32 omap2_clksel_get_src_field(void __iomem **src_addr, 697 struct clk *src_clk, u32 *field_mask, 698 struct clk *clk, u32 *parent_div) 699 { 700 const struct clksel *clks; 701 const struct clksel_rate *clkr; 702 703 *parent_div = 0; 704 *src_addr = NULL; 705 706 clks = omap2_get_clksel_by_parent(clk, src_clk); 707 if (clks == NULL) 708 return 0; 709 710 for (clkr = clks->rates; clkr->div; clkr++) { 711 if (clkr->flags & (cpu_mask | DEFAULT_RATE)) 712 break; /* Found the default rate for this platform */ 713 } 714 715 if (!clkr->div) { 716 printk(KERN_ERR "clock: Could not find default rate for " 717 "clock %s parent %s\n", clk->name, 718 src_clk->parent->name); 719 return 0; 720 } 721 722 /* Should never happen. Add a clksel mask to the struct clk. */ 723 WARN_ON(clk->clksel_mask == 0); 724 725 *field_mask = clk->clksel_mask; 726 *src_addr = clk->clksel_reg; 727 *parent_div = clkr->div; 728 729 return clkr->val; 730 } 731 732 int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent) 733 { 734 void __iomem *src_addr; 735 u32 field_val, field_mask, reg_val, parent_div; 736 737 if (unlikely(clk->flags & CONFIG_PARTICIPANT)) 738 return -EINVAL; 739 740 if (!clk->clksel) 741 return -EINVAL; 742 743 field_val = omap2_clksel_get_src_field(&src_addr, new_parent, 744 &field_mask, clk, &parent_div); 745 if (src_addr == NULL) 746 return -EINVAL; 747 748 if (clk->usecount > 0) 749 _omap2_clk_disable(clk); 750 751 /* Set new source value (previous dividers if any in effect) */ 752 reg_val = __raw_readl(src_addr) & ~field_mask; 753 reg_val |= (field_val << __ffs(field_mask)); 754 __raw_writel(reg_val, src_addr); 755 wmb(); 756 757 if (clk->flags & DELAYED_APP && cpu_is_omap24xx()) { 758 __raw_writel(OMAP24XX_VALID_CONFIG, OMAP24XX_PRCM_CLKCFG_CTRL); 759 wmb(); 760 } 761 762 if (clk->usecount > 0) 763 _omap2_clk_enable(clk); 764 765 clk->parent = new_parent; 766 767 /* CLKSEL clocks follow their parents' rates, divided by a divisor */ 768 clk->rate = new_parent->rate; 769 770 if (parent_div > 0) 771 clk->rate /= parent_div; 772 773 pr_debug("clock: set parent of %s to %s (new rate %ld)\n", 774 clk->name, clk->parent->name, clk->rate); 775 776 if (unlikely(clk->flags & RATE_PROPAGATES)) 777 propagate_rate(clk); 778 779 return 0; 780 } 781 782 /* DPLL rate rounding code */ 783 784 /** 785 * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding 786 * @clk: struct clk * of the DPLL 787 * @tolerance: maximum rate error tolerance 788 * 789 * Set the maximum DPLL rate error tolerance for the rate rounding 790 * algorithm. The rate tolerance is an attempt to balance DPLL power 791 * saving (the least divider value "n") vs. rate fidelity (the least 792 * difference between the desired DPLL target rate and the rounded 793 * rate out of the algorithm). So, increasing the tolerance is likely 794 * to decrease DPLL power consumption and increase DPLL rate error. 795 * Returns -EINVAL if provided a null clock ptr or a clk that is not a 796 * DPLL; or 0 upon success. 797 */ 798 int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance) 799 { 800 if (!clk || !clk->dpll_data) 801 return -EINVAL; 802 803 clk->dpll_data->rate_tolerance = tolerance; 804 805 return 0; 806 } 807 808 static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, unsigned int m, unsigned int n) 809 { 810 unsigned long long num; 811 812 num = (unsigned long long)parent_rate * m; 813 do_div(num, n); 814 return num; 815 } 816 817 /* 818 * _dpll_test_mult - test a DPLL multiplier value 819 * @m: pointer to the DPLL m (multiplier) value under test 820 * @n: current DPLL n (divider) value under test 821 * @new_rate: pointer to storage for the resulting rounded rate 822 * @target_rate: the desired DPLL rate 823 * @parent_rate: the DPLL's parent clock rate 824 * 825 * This code tests a DPLL multiplier value, ensuring that the 826 * resulting rate will not be higher than the target_rate, and that 827 * the multiplier value itself is valid for the DPLL. Initially, the 828 * integer pointed to by the m argument should be prescaled by 829 * multiplying by DPLL_SCALE_FACTOR. The code will replace this with 830 * a non-scaled m upon return. This non-scaled m will result in a 831 * new_rate as close as possible to target_rate (but not greater than 832 * target_rate) given the current (parent_rate, n, prescaled m) 833 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the 834 * non-scaled m attempted to underflow, which can allow the calling 835 * function to bail out early; or 0 upon success. 836 */ 837 static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, 838 unsigned long target_rate, 839 unsigned long parent_rate) 840 { 841 int flags = 0, carry = 0; 842 843 /* Unscale m and round if necessary */ 844 if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) 845 carry = 1; 846 *m = (*m / DPLL_SCALE_FACTOR) + carry; 847 848 /* 849 * The new rate must be <= the target rate to avoid programming 850 * a rate that is impossible for the hardware to handle 851 */ 852 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); 853 if (*new_rate > target_rate) { 854 (*m)--; 855 *new_rate = 0; 856 } 857 858 /* Guard against m underflow */ 859 if (*m < DPLL_MIN_MULTIPLIER) { 860 *m = DPLL_MIN_MULTIPLIER; 861 *new_rate = 0; 862 flags = DPLL_MULT_UNDERFLOW; 863 } 864 865 if (*new_rate == 0) 866 *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); 867 868 return flags; 869 } 870 871 /** 872 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL 873 * @clk: struct clk * for a DPLL 874 * @target_rate: desired DPLL clock rate 875 * 876 * Given a DPLL, a desired target rate, and a rate tolerance, round 877 * the target rate to a possible, programmable rate for this DPLL. 878 * Rate tolerance is assumed to be set by the caller before this 879 * function is called. Attempts to select the minimum possible n 880 * within the tolerance to reduce power consumption. Stores the 881 * computed (m, n) in the DPLL's dpll_data structure so set_rate() 882 * will not need to call this (expensive) function again. Returns ~0 883 * if the target rate cannot be rounded, either because the rate is 884 * too low or because the rate tolerance is set too tightly; or the 885 * rounded rate upon success. 886 */ 887 long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate) 888 { 889 int m, n, r, e, scaled_max_m; 890 unsigned long scaled_rt_rp, new_rate; 891 int min_e = -1, min_e_m = -1, min_e_n = -1; 892 893 if (!clk || !clk->dpll_data) 894 return ~0; 895 896 pr_debug("clock: starting DPLL round_rate for clock %s, target rate " 897 "%ld\n", clk->name, target_rate); 898 899 scaled_rt_rp = target_rate / (clk->parent->rate / DPLL_SCALE_FACTOR); 900 scaled_max_m = clk->dpll_data->max_multiplier * DPLL_SCALE_FACTOR; 901 902 clk->dpll_data->last_rounded_rate = 0; 903 904 for (n = clk->dpll_data->max_divider; n >= DPLL_MIN_DIVIDER; n--) { 905 906 /* Compute the scaled DPLL multiplier, based on the divider */ 907 m = scaled_rt_rp * n; 908 909 /* 910 * Since we're counting n down, a m overflow means we can 911 * can immediately skip to the next n 912 */ 913 if (m > scaled_max_m) 914 continue; 915 916 r = _dpll_test_mult(&m, n, &new_rate, target_rate, 917 clk->parent->rate); 918 919 e = target_rate - new_rate; 920 pr_debug("clock: n = %d: m = %d: rate error is %d " 921 "(new_rate = %ld)\n", n, m, e, new_rate); 922 923 if (min_e == -1 || 924 min_e >= (int)(abs(e) - clk->dpll_data->rate_tolerance)) { 925 min_e = e; 926 min_e_m = m; 927 min_e_n = n; 928 929 pr_debug("clock: found new least error %d\n", min_e); 930 } 931 932 /* 933 * Since we're counting n down, a m underflow means we 934 * can bail out completely (since as n decreases in 935 * the next iteration, there's no way that m can 936 * increase beyond the current m) 937 */ 938 if (r & DPLL_MULT_UNDERFLOW) 939 break; 940 } 941 942 if (min_e < 0) { 943 pr_debug("clock: error: target rate or tolerance too low\n"); 944 return ~0; 945 } 946 947 clk->dpll_data->last_rounded_m = min_e_m; 948 clk->dpll_data->last_rounded_n = min_e_n; 949 clk->dpll_data->last_rounded_rate = 950 _dpll_compute_new_rate(clk->parent->rate, min_e_m, min_e_n); 951 952 pr_debug("clock: final least error: e = %d, m = %d, n = %d\n", 953 min_e, min_e_m, min_e_n); 954 pr_debug("clock: final rate: %ld (target rate: %ld)\n", 955 clk->dpll_data->last_rounded_rate, target_rate); 956 957 return clk->dpll_data->last_rounded_rate; 958 } 959 960 /*------------------------------------------------------------------------- 961 * Omap2 clock reset and init functions 962 *-------------------------------------------------------------------------*/ 963 964 #ifdef CONFIG_OMAP_RESET_CLOCKS 965 void omap2_clk_disable_unused(struct clk *clk) 966 { 967 u32 regval32, v; 968 969 v = (clk->flags & INVERT_ENABLE) ? (1 << clk->enable_bit) : 0; 970 971 regval32 = __raw_readl(clk->enable_reg); 972 if ((regval32 & (1 << clk->enable_bit)) == v) 973 return; 974 975 printk(KERN_INFO "Disabling unused clock \"%s\"\n", clk->name); 976 _omap2_clk_disable(clk); 977 } 978 #endif 979