xref: /openbmc/linux/arch/arm/mach-omap2/clock.c (revision 16975a79)
1 /*
2  *  linux/arch/arm/mach-omap2/clock.c
3  *
4  *  Copyright (C) 2005-2008 Texas Instruments, Inc.
5  *  Copyright (C) 2004-2008 Nokia Corporation
6  *
7  *  Contacts:
8  *  Richard Woodruff <r-woodruff2@ti.com>
9  *  Paul Walmsley
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 #undef DEBUG
16 
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/list.h>
21 #include <linux/errno.h>
22 #include <linux/delay.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
25 #include <linux/bitops.h>
26 
27 #include <plat/clock.h>
28 #include <plat/clockdomain.h>
29 #include <plat/cpu.h>
30 #include <plat/prcm.h>
31 #include <asm/div64.h>
32 
33 #include <plat/sdrc.h>
34 #include "sdrc.h"
35 #include "clock.h"
36 #include "prm.h"
37 #include "prm-regbits-24xx.h"
38 #include "cm.h"
39 #include "cm-regbits-24xx.h"
40 #include "cm-regbits-34xx.h"
41 
42 /* DPLL rate rounding: minimum DPLL multiplier, divider values */
43 #define DPLL_MIN_MULTIPLIER		1
44 #define DPLL_MIN_DIVIDER		1
45 
46 /* Possible error results from _dpll_test_mult */
47 #define DPLL_MULT_UNDERFLOW		-1
48 
49 /*
50  * Scale factor to mitigate roundoff errors in DPLL rate rounding.
51  * The higher the scale factor, the greater the risk of arithmetic overflow,
52  * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
53  * must be a power of DPLL_SCALE_BASE.
54  */
55 #define DPLL_SCALE_FACTOR		64
56 #define DPLL_SCALE_BASE			2
57 #define DPLL_ROUNDING_VAL		((DPLL_SCALE_BASE / 2) * \
58 					 (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
59 
60 /* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */
61 #define DPLL_FINT_BAND1_MIN		750000
62 #define DPLL_FINT_BAND1_MAX		2100000
63 #define DPLL_FINT_BAND2_MIN		7500000
64 #define DPLL_FINT_BAND2_MAX		21000000
65 
66 /* _dpll_test_fint() return codes */
67 #define DPLL_FINT_UNDERFLOW		-1
68 #define DPLL_FINT_INVALID		-2
69 
70 u8 cpu_mask;
71 
72 /*-------------------------------------------------------------------------
73  * OMAP2/3 specific clock functions
74  *-------------------------------------------------------------------------*/
75 
76 /**
77  * _omap2xxx_clk_commit - commit clock parent/rate changes in hardware
78  * @clk: struct clk *
79  *
80  * If @clk has the DELAYED_APP flag set, meaning that parent/rate changes
81  * don't take effect until the VALID_CONFIG bit is written, write the
82  * VALID_CONFIG bit and wait for the write to complete.  No return value.
83  */
84 static void _omap2xxx_clk_commit(struct clk *clk)
85 {
86 	if (!cpu_is_omap24xx())
87 		return;
88 
89 	if (!(clk->flags & DELAYED_APP))
90 		return;
91 
92 	prm_write_mod_reg(OMAP24XX_VALID_CONFIG, OMAP24XX_GR_MOD,
93 		OMAP2_PRCM_CLKCFG_CTRL_OFFSET);
94 	/* OCP barrier */
95 	prm_read_mod_reg(OMAP24XX_GR_MOD, OMAP2_PRCM_CLKCFG_CTRL_OFFSET);
96 }
97 
98 /*
99  * _dpll_test_fint - test whether an Fint value is valid for the DPLL
100  * @clk: DPLL struct clk to test
101  * @n: divider value (N) to test
102  *
103  * Tests whether a particular divider @n will result in a valid DPLL
104  * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
105  * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
106  * (assuming that it is counting N upwards), or -2 if the enclosing loop
107  * should skip to the next iteration (again assuming N is increasing).
108  */
109 static int _dpll_test_fint(struct clk *clk, u8 n)
110 {
111 	struct dpll_data *dd;
112 	long fint;
113 	int ret = 0;
114 
115 	dd = clk->dpll_data;
116 
117 	/* DPLL divider must result in a valid jitter correction val */
118 	fint = clk->parent->rate / (n + 1);
119 	if (fint < DPLL_FINT_BAND1_MIN) {
120 
121 		pr_debug("rejecting n=%d due to Fint failure, "
122 			 "lowering max_divider\n", n);
123 		dd->max_divider = n;
124 		ret = DPLL_FINT_UNDERFLOW;
125 
126 	} else if (fint > DPLL_FINT_BAND1_MAX &&
127 		   fint < DPLL_FINT_BAND2_MIN) {
128 
129 		pr_debug("rejecting n=%d due to Fint failure\n", n);
130 		ret = DPLL_FINT_INVALID;
131 
132 	} else if (fint > DPLL_FINT_BAND2_MAX) {
133 
134 		pr_debug("rejecting n=%d due to Fint failure, "
135 			 "boosting min_divider\n", n);
136 		dd->min_divider = n;
137 		ret = DPLL_FINT_INVALID;
138 
139 	}
140 
141 	return ret;
142 }
143 
144 /**
145  * omap2_init_clk_clkdm - look up a clockdomain name, store pointer in clk
146  * @clk: OMAP clock struct ptr to use
147  *
148  * Convert a clockdomain name stored in a struct clk 'clk' into a
149  * clockdomain pointer, and save it into the struct clk.  Intended to be
150  * called during clk_register().  No return value.
151  */
152 #ifndef CONFIG_ARCH_OMAP4 /* FIXME: Remove this once clkdm f/w is in place */
153 void omap2_init_clk_clkdm(struct clk *clk)
154 {
155 	struct clockdomain *clkdm;
156 
157 	if (!clk->clkdm_name)
158 		return;
159 
160 	clkdm = clkdm_lookup(clk->clkdm_name);
161 	if (clkdm) {
162 		pr_debug("clock: associated clk %s to clkdm %s\n",
163 			 clk->name, clk->clkdm_name);
164 		clk->clkdm = clkdm;
165 	} else {
166 		pr_debug("clock: could not associate clk %s to "
167 			 "clkdm %s\n", clk->name, clk->clkdm_name);
168 	}
169 }
170 #endif
171 
172 /**
173  * omap2_init_clksel_parent - set a clksel clk's parent field from the hardware
174  * @clk: OMAP clock struct ptr to use
175  *
176  * Given a pointer to a source-selectable struct clk, read the hardware
177  * register and determine what its parent is currently set to.  Update the
178  * clk->parent field with the appropriate clk ptr.
179  */
180 void omap2_init_clksel_parent(struct clk *clk)
181 {
182 	const struct clksel *clks;
183 	const struct clksel_rate *clkr;
184 	u32 r, found = 0;
185 
186 	if (!clk->clksel)
187 		return;
188 
189 	r = __raw_readl(clk->clksel_reg) & clk->clksel_mask;
190 	r >>= __ffs(clk->clksel_mask);
191 
192 	for (clks = clk->clksel; clks->parent && !found; clks++) {
193 		for (clkr = clks->rates; clkr->div && !found; clkr++) {
194 			if ((clkr->flags & cpu_mask) && (clkr->val == r)) {
195 				if (clk->parent != clks->parent) {
196 					pr_debug("clock: inited %s parent "
197 						 "to %s (was %s)\n",
198 						 clk->name, clks->parent->name,
199 						 ((clk->parent) ?
200 						  clk->parent->name : "NULL"));
201 					clk_reparent(clk, clks->parent);
202 				};
203 				found = 1;
204 			}
205 		}
206 	}
207 
208 	if (!found)
209 		printk(KERN_ERR "clock: init parent: could not find "
210 		       "regval %0x for clock %s\n", r,  clk->name);
211 
212 	return;
213 }
214 
215 /**
216  * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
217  * @clk: struct clk * of a DPLL
218  *
219  * DPLLs can be locked or bypassed - basically, enabled or disabled.
220  * When locked, the DPLL output depends on the M and N values.  When
221  * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
222  * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
223  * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
224  * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
225  * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
226  * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
227  * if the clock @clk is not a DPLL.
228  */
229 u32 omap2_get_dpll_rate(struct clk *clk)
230 {
231 	long long dpll_clk;
232 	u32 dpll_mult, dpll_div, v;
233 	struct dpll_data *dd;
234 
235 	dd = clk->dpll_data;
236 	if (!dd)
237 		return 0;
238 
239 	/* Return bypass rate if DPLL is bypassed */
240 	v = __raw_readl(dd->control_reg);
241 	v &= dd->enable_mask;
242 	v >>= __ffs(dd->enable_mask);
243 
244 	if (cpu_is_omap24xx()) {
245 		if (v == OMAP2XXX_EN_DPLL_LPBYPASS ||
246 		    v == OMAP2XXX_EN_DPLL_FRBYPASS)
247 			return dd->clk_bypass->rate;
248 	} else if (cpu_is_omap34xx()) {
249 		if (v == OMAP3XXX_EN_DPLL_LPBYPASS ||
250 		    v == OMAP3XXX_EN_DPLL_FRBYPASS)
251 			return dd->clk_bypass->rate;
252 	} else if (cpu_is_omap44xx()) {
253 		if (v == OMAP4XXX_EN_DPLL_LPBYPASS ||
254 		    v == OMAP4XXX_EN_DPLL_FRBYPASS ||
255 		    v == OMAP4XXX_EN_DPLL_MNBYPASS)
256 			return dd->clk_bypass->rate;
257 	}
258 
259 	v = __raw_readl(dd->mult_div1_reg);
260 	dpll_mult = v & dd->mult_mask;
261 	dpll_mult >>= __ffs(dd->mult_mask);
262 	dpll_div = v & dd->div1_mask;
263 	dpll_div >>= __ffs(dd->div1_mask);
264 
265 	dpll_clk = (long long)dd->clk_ref->rate * dpll_mult;
266 	do_div(dpll_clk, dpll_div + 1);
267 
268 	return dpll_clk;
269 }
270 
271 /*
272  * Used for clocks that have the same value as the parent clock,
273  * divided by some factor
274  */
275 unsigned long omap2_fixed_divisor_recalc(struct clk *clk)
276 {
277 	WARN_ON(!clk->fixed_div);
278 
279 	return clk->parent->rate / clk->fixed_div;
280 }
281 
282 /**
283  * omap2_clk_dflt_find_companion - find companion clock to @clk
284  * @clk: struct clk * to find the companion clock of
285  * @other_reg: void __iomem ** to return the companion clock CM_*CLKEN va in
286  * @other_bit: u8 ** to return the companion clock bit shift in
287  *
288  * Note: We don't need special code here for INVERT_ENABLE for the
289  * time being since INVERT_ENABLE only applies to clocks enabled by
290  * CM_CLKEN_PLL
291  *
292  * Convert CM_ICLKEN* <-> CM_FCLKEN*.  This conversion assumes it's
293  * just a matter of XORing the bits.
294  *
295  * Some clocks don't have companion clocks.  For example, modules with
296  * only an interface clock (such as MAILBOXES) don't have a companion
297  * clock.  Right now, this code relies on the hardware exporting a bit
298  * in the correct companion register that indicates that the
299  * nonexistent 'companion clock' is active.  Future patches will
300  * associate this type of code with per-module data structures to
301  * avoid this issue, and remove the casts.  No return value.
302  */
303 void omap2_clk_dflt_find_companion(struct clk *clk, void __iomem **other_reg,
304 				   u8 *other_bit)
305 {
306 	u32 r;
307 
308 	/*
309 	 * Convert CM_ICLKEN* <-> CM_FCLKEN*.  This conversion assumes
310 	 * it's just a matter of XORing the bits.
311 	 */
312 	r = ((__force u32)clk->enable_reg ^ (CM_FCLKEN ^ CM_ICLKEN));
313 
314 	*other_reg = (__force void __iomem *)r;
315 	*other_bit = clk->enable_bit;
316 }
317 
318 /**
319  * omap2_clk_dflt_find_idlest - find CM_IDLEST reg va, bit shift for @clk
320  * @clk: struct clk * to find IDLEST info for
321  * @idlest_reg: void __iomem ** to return the CM_IDLEST va in
322  * @idlest_bit: u8 ** to return the CM_IDLEST bit shift in
323  *
324  * Return the CM_IDLEST register address and bit shift corresponding
325  * to the module that "owns" this clock.  This default code assumes
326  * that the CM_IDLEST bit shift is the CM_*CLKEN bit shift, and that
327  * the IDLEST register address ID corresponds to the CM_*CLKEN
328  * register address ID (e.g., that CM_FCLKEN2 corresponds to
329  * CM_IDLEST2).  This is not true for all modules.  No return value.
330  */
331 void omap2_clk_dflt_find_idlest(struct clk *clk, void __iomem **idlest_reg,
332 				u8 *idlest_bit)
333 {
334 	u32 r;
335 
336 	r = (((__force u32)clk->enable_reg & ~0xf0) | 0x20);
337 	*idlest_reg = (__force void __iomem *)r;
338 	*idlest_bit = clk->enable_bit;
339 }
340 
341 /**
342  * omap2_module_wait_ready - wait for an OMAP module to leave IDLE
343  * @clk: struct clk * belonging to the module
344  *
345  * If the necessary clocks for the OMAP hardware IP block that
346  * corresponds to clock @clk are enabled, then wait for the module to
347  * indicate readiness (i.e., to leave IDLE).  This code does not
348  * belong in the clock code and will be moved in the medium term to
349  * module-dependent code.  No return value.
350  */
351 static void omap2_module_wait_ready(struct clk *clk)
352 {
353 	void __iomem *companion_reg, *idlest_reg;
354 	u8 other_bit, idlest_bit;
355 
356 	/* Not all modules have multiple clocks that their IDLEST depends on */
357 	if (clk->ops->find_companion) {
358 		clk->ops->find_companion(clk, &companion_reg, &other_bit);
359 		if (!(__raw_readl(companion_reg) & (1 << other_bit)))
360 			return;
361 	}
362 
363 	clk->ops->find_idlest(clk, &idlest_reg, &idlest_bit);
364 
365 	omap2_cm_wait_idlest(idlest_reg, (1 << idlest_bit), clk->name);
366 }
367 
368 int omap2_dflt_clk_enable(struct clk *clk)
369 {
370 	u32 v;
371 
372 	if (unlikely(clk->enable_reg == NULL)) {
373 		pr_err("clock.c: Enable for %s without enable code\n",
374 		       clk->name);
375 		return 0; /* REVISIT: -EINVAL */
376 	}
377 
378 	v = __raw_readl(clk->enable_reg);
379 	if (clk->flags & INVERT_ENABLE)
380 		v &= ~(1 << clk->enable_bit);
381 	else
382 		v |= (1 << clk->enable_bit);
383 	__raw_writel(v, clk->enable_reg);
384 	v = __raw_readl(clk->enable_reg); /* OCP barrier */
385 
386 	if (clk->ops->find_idlest)
387 		omap2_module_wait_ready(clk);
388 
389 	return 0;
390 }
391 
392 void omap2_dflt_clk_disable(struct clk *clk)
393 {
394 	u32 v;
395 
396 	if (!clk->enable_reg) {
397 		/*
398 		 * 'Independent' here refers to a clock which is not
399 		 * controlled by its parent.
400 		 */
401 		printk(KERN_ERR "clock: clk_disable called on independent "
402 		       "clock %s which has no enable_reg\n", clk->name);
403 		return;
404 	}
405 
406 	v = __raw_readl(clk->enable_reg);
407 	if (clk->flags & INVERT_ENABLE)
408 		v |= (1 << clk->enable_bit);
409 	else
410 		v &= ~(1 << clk->enable_bit);
411 	__raw_writel(v, clk->enable_reg);
412 	/* No OCP barrier needed here since it is a disable operation */
413 }
414 
415 const struct clkops clkops_omap2_dflt_wait = {
416 	.enable		= omap2_dflt_clk_enable,
417 	.disable	= omap2_dflt_clk_disable,
418 	.find_companion	= omap2_clk_dflt_find_companion,
419 	.find_idlest	= omap2_clk_dflt_find_idlest,
420 };
421 
422 const struct clkops clkops_omap2_dflt = {
423 	.enable		= omap2_dflt_clk_enable,
424 	.disable	= omap2_dflt_clk_disable,
425 };
426 
427 /* Enables clock without considering parent dependencies or use count
428  * REVISIT: Maybe change this to use clk->enable like on omap1?
429  */
430 static int _omap2_clk_enable(struct clk *clk)
431 {
432 	return clk->ops->enable(clk);
433 }
434 
435 /* Disables clock without considering parent dependencies or use count */
436 static void _omap2_clk_disable(struct clk *clk)
437 {
438 	clk->ops->disable(clk);
439 }
440 
441 void omap2_clk_disable(struct clk *clk)
442 {
443 	if (clk->usecount > 0 && !(--clk->usecount)) {
444 		_omap2_clk_disable(clk);
445 		if (clk->parent)
446 			omap2_clk_disable(clk->parent);
447 #ifndef CONFIG_ARCH_OMAP4 /* FIXME: Remove this once clkdm f/w is in place */
448 		if (clk->clkdm)
449 			omap2_clkdm_clk_disable(clk->clkdm, clk);
450 #endif
451 
452 	}
453 }
454 
455 int omap2_clk_enable(struct clk *clk)
456 {
457 	int ret = 0;
458 
459 	if (clk->usecount++ == 0) {
460 #ifndef CONFIG_ARCH_OMAP4 /* FIXME: Remove this once clkdm f/w is in place */
461 		if (clk->clkdm)
462 			omap2_clkdm_clk_enable(clk->clkdm, clk);
463 #endif
464 
465 		if (clk->parent) {
466 			ret = omap2_clk_enable(clk->parent);
467 			if (ret)
468 				goto err;
469 		}
470 
471 		ret = _omap2_clk_enable(clk);
472 		if (ret) {
473 			if (clk->parent)
474 				omap2_clk_disable(clk->parent);
475 
476 			goto err;
477 		}
478 	}
479 	return ret;
480 
481 err:
482 #ifndef CONFIG_ARCH_OMAP4 /* FIXME: Remove this once clkdm f/w is in place */
483 	if (clk->clkdm)
484 		omap2_clkdm_clk_disable(clk->clkdm, clk);
485 #endif
486 	clk->usecount--;
487 	return ret;
488 }
489 
490 /*
491  * Used for clocks that are part of CLKSEL_xyz governed clocks.
492  * REVISIT: Maybe change to use clk->enable() functions like on omap1?
493  */
494 unsigned long omap2_clksel_recalc(struct clk *clk)
495 {
496 	unsigned long rate;
497 	u32 div = 0;
498 
499 	pr_debug("clock: recalc'ing clksel clk %s\n", clk->name);
500 
501 	div = omap2_clksel_get_divisor(clk);
502 	if (div == 0)
503 		return clk->rate;
504 
505 	rate = clk->parent->rate / div;
506 
507 	pr_debug("clock: new clock rate is %ld (div %d)\n", rate, div);
508 
509 	return rate;
510 }
511 
512 /**
513  * omap2_get_clksel_by_parent - return clksel struct for a given clk & parent
514  * @clk: OMAP struct clk ptr to inspect
515  * @src_clk: OMAP struct clk ptr of the parent clk to search for
516  *
517  * Scan the struct clksel array associated with the clock to find
518  * the element associated with the supplied parent clock address.
519  * Returns a pointer to the struct clksel on success or NULL on error.
520  */
521 static const struct clksel *omap2_get_clksel_by_parent(struct clk *clk,
522 						       struct clk *src_clk)
523 {
524 	const struct clksel *clks;
525 
526 	if (!clk->clksel)
527 		return NULL;
528 
529 	for (clks = clk->clksel; clks->parent; clks++) {
530 		if (clks->parent == src_clk)
531 			break; /* Found the requested parent */
532 	}
533 
534 	if (!clks->parent) {
535 		printk(KERN_ERR "clock: Could not find parent clock %s in "
536 		       "clksel array of clock %s\n", src_clk->name,
537 		       clk->name);
538 		return NULL;
539 	}
540 
541 	return clks;
542 }
543 
544 /**
545  * omap2_clksel_round_rate_div - find divisor for the given clock and rate
546  * @clk: OMAP struct clk to use
547  * @target_rate: desired clock rate
548  * @new_div: ptr to where we should store the divisor
549  *
550  * Finds 'best' divider value in an array based on the source and target
551  * rates.  The divider array must be sorted with smallest divider first.
552  * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
553  * they are only settable as part of virtual_prcm set.
554  *
555  * Returns the rounded clock rate or returns 0xffffffff on error.
556  */
557 u32 omap2_clksel_round_rate_div(struct clk *clk, unsigned long target_rate,
558 				u32 *new_div)
559 {
560 	unsigned long test_rate;
561 	const struct clksel *clks;
562 	const struct clksel_rate *clkr;
563 	u32 last_div = 0;
564 
565 	pr_debug("clock: clksel_round_rate_div: %s target_rate %ld\n",
566 		 clk->name, target_rate);
567 
568 	*new_div = 1;
569 
570 	clks = omap2_get_clksel_by_parent(clk, clk->parent);
571 	if (!clks)
572 		return ~0;
573 
574 	for (clkr = clks->rates; clkr->div; clkr++) {
575 		if (!(clkr->flags & cpu_mask))
576 		    continue;
577 
578 		/* Sanity check */
579 		if (clkr->div <= last_div)
580 			pr_err("clock: clksel_rate table not sorted "
581 			       "for clock %s", clk->name);
582 
583 		last_div = clkr->div;
584 
585 		test_rate = clk->parent->rate / clkr->div;
586 
587 		if (test_rate <= target_rate)
588 			break; /* found it */
589 	}
590 
591 	if (!clkr->div) {
592 		pr_err("clock: Could not find divisor for target "
593 		       "rate %ld for clock %s parent %s\n", target_rate,
594 		       clk->name, clk->parent->name);
595 		return ~0;
596 	}
597 
598 	*new_div = clkr->div;
599 
600 	pr_debug("clock: new_div = %d, new_rate = %ld\n", *new_div,
601 		 (clk->parent->rate / clkr->div));
602 
603 	return (clk->parent->rate / clkr->div);
604 }
605 
606 /**
607  * omap2_clksel_round_rate - find rounded rate for the given clock and rate
608  * @clk: OMAP struct clk to use
609  * @target_rate: desired clock rate
610  *
611  * Compatibility wrapper for OMAP clock framework
612  * Finds best target rate based on the source clock and possible dividers.
613  * rates. The divider array must be sorted with smallest divider first.
614  * Note that this will not work for clocks which are part of CONFIG_PARTICIPANT,
615  * they are only settable as part of virtual_prcm set.
616  *
617  * Returns the rounded clock rate or returns 0xffffffff on error.
618  */
619 long omap2_clksel_round_rate(struct clk *clk, unsigned long target_rate)
620 {
621 	u32 new_div;
622 
623 	return omap2_clksel_round_rate_div(clk, target_rate, &new_div);
624 }
625 
626 
627 /* Given a clock and a rate apply a clock specific rounding function */
628 long omap2_clk_round_rate(struct clk *clk, unsigned long rate)
629 {
630 	if (clk->round_rate)
631 		return clk->round_rate(clk, rate);
632 
633 	if (clk->flags & RATE_FIXED)
634 		printk(KERN_ERR "clock: generic omap2_clk_round_rate called "
635 		       "on fixed-rate clock %s\n", clk->name);
636 
637 	return clk->rate;
638 }
639 
640 /**
641  * omap2_clksel_to_divisor() - turn clksel field value into integer divider
642  * @clk: OMAP struct clk to use
643  * @field_val: register field value to find
644  *
645  * Given a struct clk of a rate-selectable clksel clock, and a register field
646  * value to search for, find the corresponding clock divisor.  The register
647  * field value should be pre-masked and shifted down so the LSB is at bit 0
648  * before calling.  Returns 0 on error
649  */
650 u32 omap2_clksel_to_divisor(struct clk *clk, u32 field_val)
651 {
652 	const struct clksel *clks;
653 	const struct clksel_rate *clkr;
654 
655 	clks = omap2_get_clksel_by_parent(clk, clk->parent);
656 	if (!clks)
657 		return 0;
658 
659 	for (clkr = clks->rates; clkr->div; clkr++) {
660 		if ((clkr->flags & cpu_mask) && (clkr->val == field_val))
661 			break;
662 	}
663 
664 	if (!clkr->div) {
665 		printk(KERN_ERR "clock: Could not find fieldval %d for "
666 		       "clock %s parent %s\n", field_val, clk->name,
667 		       clk->parent->name);
668 		return 0;
669 	}
670 
671 	return clkr->div;
672 }
673 
674 /**
675  * omap2_divisor_to_clksel() - turn clksel integer divisor into a field value
676  * @clk: OMAP struct clk to use
677  * @div: integer divisor to search for
678  *
679  * Given a struct clk of a rate-selectable clksel clock, and a clock divisor,
680  * find the corresponding register field value.  The return register value is
681  * the value before left-shifting.  Returns ~0 on error
682  */
683 u32 omap2_divisor_to_clksel(struct clk *clk, u32 div)
684 {
685 	const struct clksel *clks;
686 	const struct clksel_rate *clkr;
687 
688 	/* should never happen */
689 	WARN_ON(div == 0);
690 
691 	clks = omap2_get_clksel_by_parent(clk, clk->parent);
692 	if (!clks)
693 		return ~0;
694 
695 	for (clkr = clks->rates; clkr->div; clkr++) {
696 		if ((clkr->flags & cpu_mask) && (clkr->div == div))
697 			break;
698 	}
699 
700 	if (!clkr->div) {
701 		printk(KERN_ERR "clock: Could not find divisor %d for "
702 		       "clock %s parent %s\n", div, clk->name,
703 		       clk->parent->name);
704 		return ~0;
705 	}
706 
707 	return clkr->val;
708 }
709 
710 /**
711  * omap2_clksel_get_divisor - get current divider applied to parent clock.
712  * @clk: OMAP struct clk to use.
713  *
714  * Returns the integer divisor upon success or 0 on error.
715  */
716 u32 omap2_clksel_get_divisor(struct clk *clk)
717 {
718 	u32 v;
719 
720 	if (!clk->clksel_mask)
721 		return 0;
722 
723 	v = __raw_readl(clk->clksel_reg) & clk->clksel_mask;
724 	v >>= __ffs(clk->clksel_mask);
725 
726 	return omap2_clksel_to_divisor(clk, v);
727 }
728 
729 int omap2_clksel_set_rate(struct clk *clk, unsigned long rate)
730 {
731 	u32 v, field_val, validrate, new_div = 0;
732 
733 	if (!clk->clksel_mask)
734 		return -EINVAL;
735 
736 	validrate = omap2_clksel_round_rate_div(clk, rate, &new_div);
737 	if (validrate != rate)
738 		return -EINVAL;
739 
740 	field_val = omap2_divisor_to_clksel(clk, new_div);
741 	if (field_val == ~0)
742 		return -EINVAL;
743 
744 	v = __raw_readl(clk->clksel_reg);
745 	v &= ~clk->clksel_mask;
746 	v |= field_val << __ffs(clk->clksel_mask);
747 	__raw_writel(v, clk->clksel_reg);
748 	v = __raw_readl(clk->clksel_reg); /* OCP barrier */
749 
750 	clk->rate = clk->parent->rate / new_div;
751 
752 	_omap2xxx_clk_commit(clk);
753 
754 	return 0;
755 }
756 
757 
758 /* Set the clock rate for a clock source */
759 int omap2_clk_set_rate(struct clk *clk, unsigned long rate)
760 {
761 	int ret = -EINVAL;
762 
763 	pr_debug("clock: set_rate for clock %s to rate %ld\n", clk->name, rate);
764 
765 	/* CONFIG_PARTICIPANT clocks are changed only in sets via the
766 	   rate table mechanism, driven by mpu_speed  */
767 	if (clk->flags & CONFIG_PARTICIPANT)
768 		return -EINVAL;
769 
770 	/* dpll_ck, core_ck, virt_prcm_set; plus all clksel clocks */
771 	if (clk->set_rate)
772 		ret = clk->set_rate(clk, rate);
773 
774 	return ret;
775 }
776 
777 /*
778  * Converts encoded control register address into a full address
779  * On error, the return value (parent_div) will be 0.
780  */
781 static u32 _omap2_clksel_get_src_field(struct clk *src_clk, struct clk *clk,
782 				       u32 *field_val)
783 {
784 	const struct clksel *clks;
785 	const struct clksel_rate *clkr;
786 
787 	clks = omap2_get_clksel_by_parent(clk, src_clk);
788 	if (!clks)
789 		return 0;
790 
791 	for (clkr = clks->rates; clkr->div; clkr++) {
792 		if (clkr->flags & cpu_mask && clkr->flags & DEFAULT_RATE)
793 			break; /* Found the default rate for this platform */
794 	}
795 
796 	if (!clkr->div) {
797 		printk(KERN_ERR "clock: Could not find default rate for "
798 		       "clock %s parent %s\n", clk->name,
799 		       src_clk->parent->name);
800 		return 0;
801 	}
802 
803 	/* Should never happen.  Add a clksel mask to the struct clk. */
804 	WARN_ON(clk->clksel_mask == 0);
805 
806 	*field_val = clkr->val;
807 
808 	return clkr->div;
809 }
810 
811 int omap2_clk_set_parent(struct clk *clk, struct clk *new_parent)
812 {
813 	u32 field_val, v, parent_div;
814 
815 	if (clk->flags & CONFIG_PARTICIPANT)
816 		return -EINVAL;
817 
818 	if (!clk->clksel)
819 		return -EINVAL;
820 
821 	parent_div = _omap2_clksel_get_src_field(new_parent, clk, &field_val);
822 	if (!parent_div)
823 		return -EINVAL;
824 
825 	/* Set new source value (previous dividers if any in effect) */
826 	v = __raw_readl(clk->clksel_reg);
827 	v &= ~clk->clksel_mask;
828 	v |= field_val << __ffs(clk->clksel_mask);
829 	__raw_writel(v, clk->clksel_reg);
830 	v = __raw_readl(clk->clksel_reg);    /* OCP barrier */
831 
832 	_omap2xxx_clk_commit(clk);
833 
834 	clk_reparent(clk, new_parent);
835 
836 	/* CLKSEL clocks follow their parents' rates, divided by a divisor */
837 	clk->rate = new_parent->rate;
838 
839 	if (parent_div > 0)
840 		clk->rate /= parent_div;
841 
842 	pr_debug("clock: set parent of %s to %s (new rate %ld)\n",
843 		 clk->name, clk->parent->name, clk->rate);
844 
845 	return 0;
846 }
847 
848 /* DPLL rate rounding code */
849 
850 /**
851  * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding
852  * @clk: struct clk * of the DPLL
853  * @tolerance: maximum rate error tolerance
854  *
855  * Set the maximum DPLL rate error tolerance for the rate rounding
856  * algorithm.  The rate tolerance is an attempt to balance DPLL power
857  * saving (the least divider value "n") vs. rate fidelity (the least
858  * difference between the desired DPLL target rate and the rounded
859  * rate out of the algorithm).  So, increasing the tolerance is likely
860  * to decrease DPLL power consumption and increase DPLL rate error.
861  * Returns -EINVAL if provided a null clock ptr or a clk that is not a
862  * DPLL; or 0 upon success.
863  */
864 int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance)
865 {
866 	if (!clk || !clk->dpll_data)
867 		return -EINVAL;
868 
869 	clk->dpll_data->rate_tolerance = tolerance;
870 
871 	return 0;
872 }
873 
874 static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
875 					    unsigned int m, unsigned int n)
876 {
877 	unsigned long long num;
878 
879 	num = (unsigned long long)parent_rate * m;
880 	do_div(num, n);
881 	return num;
882 }
883 
884 /*
885  * _dpll_test_mult - test a DPLL multiplier value
886  * @m: pointer to the DPLL m (multiplier) value under test
887  * @n: current DPLL n (divider) value under test
888  * @new_rate: pointer to storage for the resulting rounded rate
889  * @target_rate: the desired DPLL rate
890  * @parent_rate: the DPLL's parent clock rate
891  *
892  * This code tests a DPLL multiplier value, ensuring that the
893  * resulting rate will not be higher than the target_rate, and that
894  * the multiplier value itself is valid for the DPLL.  Initially, the
895  * integer pointed to by the m argument should be prescaled by
896  * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
897  * a non-scaled m upon return.  This non-scaled m will result in a
898  * new_rate as close as possible to target_rate (but not greater than
899  * target_rate) given the current (parent_rate, n, prescaled m)
900  * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
901  * non-scaled m attempted to underflow, which can allow the calling
902  * function to bail out early; or 0 upon success.
903  */
904 static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
905 			   unsigned long target_rate,
906 			   unsigned long parent_rate)
907 {
908 	int r = 0, carry = 0;
909 
910 	/* Unscale m and round if necessary */
911 	if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
912 		carry = 1;
913 	*m = (*m / DPLL_SCALE_FACTOR) + carry;
914 
915 	/*
916 	 * The new rate must be <= the target rate to avoid programming
917 	 * a rate that is impossible for the hardware to handle
918 	 */
919 	*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
920 	if (*new_rate > target_rate) {
921 		(*m)--;
922 		*new_rate = 0;
923 	}
924 
925 	/* Guard against m underflow */
926 	if (*m < DPLL_MIN_MULTIPLIER) {
927 		*m = DPLL_MIN_MULTIPLIER;
928 		*new_rate = 0;
929 		r = DPLL_MULT_UNDERFLOW;
930 	}
931 
932 	if (*new_rate == 0)
933 		*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
934 
935 	return r;
936 }
937 
938 /**
939  * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
940  * @clk: struct clk * for a DPLL
941  * @target_rate: desired DPLL clock rate
942  *
943  * Given a DPLL, a desired target rate, and a rate tolerance, round
944  * the target rate to a possible, programmable rate for this DPLL.
945  * Rate tolerance is assumed to be set by the caller before this
946  * function is called.  Attempts to select the minimum possible n
947  * within the tolerance to reduce power consumption.  Stores the
948  * computed (m, n) in the DPLL's dpll_data structure so set_rate()
949  * will not need to call this (expensive) function again.  Returns ~0
950  * if the target rate cannot be rounded, either because the rate is
951  * too low or because the rate tolerance is set too tightly; or the
952  * rounded rate upon success.
953  */
954 long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
955 {
956 	int m, n, r, e, scaled_max_m;
957 	unsigned long scaled_rt_rp, new_rate;
958 	int min_e = -1, min_e_m = -1, min_e_n = -1;
959 	struct dpll_data *dd;
960 
961 	if (!clk || !clk->dpll_data)
962 		return ~0;
963 
964 	dd = clk->dpll_data;
965 
966 	pr_debug("clock: starting DPLL round_rate for clock %s, target rate "
967 		 "%ld\n", clk->name, target_rate);
968 
969 	scaled_rt_rp = target_rate / (dd->clk_ref->rate / DPLL_SCALE_FACTOR);
970 	scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
971 
972 	dd->last_rounded_rate = 0;
973 
974 	for (n = dd->min_divider; n <= dd->max_divider; n++) {
975 
976 		/* Is the (input clk, divider) pair valid for the DPLL? */
977 		r = _dpll_test_fint(clk, n);
978 		if (r == DPLL_FINT_UNDERFLOW)
979 			break;
980 		else if (r == DPLL_FINT_INVALID)
981 			continue;
982 
983 		/* Compute the scaled DPLL multiplier, based on the divider */
984 		m = scaled_rt_rp * n;
985 
986 		/*
987 		 * Since we're counting n up, a m overflow means we
988 		 * can bail out completely (since as n increases in
989 		 * the next iteration, there's no way that m can
990 		 * increase beyond the current m)
991 		 */
992 		if (m > scaled_max_m)
993 			break;
994 
995 		r = _dpll_test_mult(&m, n, &new_rate, target_rate,
996 				    dd->clk_ref->rate);
997 
998 		/* m can't be set low enough for this n - try with a larger n */
999 		if (r == DPLL_MULT_UNDERFLOW)
1000 			continue;
1001 
1002 		e = target_rate - new_rate;
1003 		pr_debug("clock: n = %d: m = %d: rate error is %d "
1004 			 "(new_rate = %ld)\n", n, m, e, new_rate);
1005 
1006 		if (min_e == -1 ||
1007 		    min_e >= (int)(abs(e) - dd->rate_tolerance)) {
1008 			min_e = e;
1009 			min_e_m = m;
1010 			min_e_n = n;
1011 
1012 			pr_debug("clock: found new least error %d\n", min_e);
1013 
1014 			/* We found good settings -- bail out now */
1015 			if (min_e <= dd->rate_tolerance)
1016 				break;
1017 		}
1018 	}
1019 
1020 	if (min_e < 0) {
1021 		pr_debug("clock: error: target rate or tolerance too low\n");
1022 		return ~0;
1023 	}
1024 
1025 	dd->last_rounded_m = min_e_m;
1026 	dd->last_rounded_n = min_e_n;
1027 	dd->last_rounded_rate = _dpll_compute_new_rate(dd->clk_ref->rate,
1028 						       min_e_m,  min_e_n);
1029 
1030 	pr_debug("clock: final least error: e = %d, m = %d, n = %d\n",
1031 		 min_e, min_e_m, min_e_n);
1032 	pr_debug("clock: final rate: %ld  (target rate: %ld)\n",
1033 		 dd->last_rounded_rate, target_rate);
1034 
1035 	return dd->last_rounded_rate;
1036 }
1037 
1038 /*-------------------------------------------------------------------------
1039  * Omap2 clock reset and init functions
1040  *-------------------------------------------------------------------------*/
1041 
1042 #ifdef CONFIG_OMAP_RESET_CLOCKS
1043 void omap2_clk_disable_unused(struct clk *clk)
1044 {
1045 	u32 regval32, v;
1046 
1047 	v = (clk->flags & INVERT_ENABLE) ? (1 << clk->enable_bit) : 0;
1048 
1049 	regval32 = __raw_readl(clk->enable_reg);
1050 	if ((regval32 & (1 << clk->enable_bit)) == v)
1051 		return;
1052 
1053 	printk(KERN_DEBUG "Disabling unused clock \"%s\"\n", clk->name);
1054 	if (cpu_is_omap34xx()) {
1055 		omap2_clk_enable(clk);
1056 		omap2_clk_disable(clk);
1057 	} else
1058 		_omap2_clk_disable(clk);
1059 	if (clk->clkdm != NULL)
1060 		pwrdm_clkdm_state_switch(clk->clkdm);
1061 }
1062 #endif
1063