xref: /openbmc/linux/arch/arm/mach-omap1/time.c (revision a1e58bbd)
1 /*
2  * linux/arch/arm/mach-omap1/time.c
3  *
4  * OMAP Timers
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  * Partial timer rewrite and additional dynamic tick timer support by
8  * Tony Lindgen <tony@atomide.com> and
9  * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
10  *
11  * MPU timer code based on the older MPU timer code for OMAP
12  * Copyright (C) 2000 RidgeRun, Inc.
13  * Author: Greg Lonnon <glonnon@ridgerun.com>
14  *
15  * This program is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by the
17  * Free Software Foundation; either version 2 of the License, or (at your
18  * option) any later version.
19  *
20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
23  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
26  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * You should have received a copy of the  GNU General Public License along
32  * with this program; if not, write  to the Free Software Foundation, Inc.,
33  * 675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 #include <linux/kernel.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/spinlock.h>
42 #include <linux/clk.h>
43 #include <linux/err.h>
44 #include <linux/clocksource.h>
45 #include <linux/clockchips.h>
46 
47 #include <asm/system.h>
48 #include <asm/hardware.h>
49 #include <asm/io.h>
50 #include <asm/leds.h>
51 #include <asm/irq.h>
52 #include <asm/mach/irq.h>
53 #include <asm/mach/time.h>
54 
55 
56 #define OMAP_MPU_TIMER_BASE		OMAP_MPU_TIMER1_BASE
57 #define OMAP_MPU_TIMER_OFFSET		0x100
58 
59 /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
60  * converted to use kHz by Kevin Hilman */
61 /* convert from cycles(64bits) => nanoseconds (64bits)
62  *  basic equation:
63  *		ns = cycles / (freq / ns_per_sec)
64  *		ns = cycles * (ns_per_sec / freq)
65  *		ns = cycles * (10^9 / (cpu_khz * 10^3))
66  *		ns = cycles * (10^6 / cpu_khz)
67  *
68  *	Then we use scaling math (suggested by george at mvista.com) to get:
69  *		ns = cycles * (10^6 * SC / cpu_khz / SC
70  *		ns = cycles * cyc2ns_scale / SC
71  *
72  *	And since SC is a constant power of two, we can convert the div
73  *  into a shift.
74  *			-johnstul at us.ibm.com "math is hard, lets go shopping!"
75  */
76 static unsigned long cyc2ns_scale;
77 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
78 
79 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
80 {
81 	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
82 }
83 
84 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
85 {
86 	return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
87 }
88 
89 
90 typedef struct {
91 	u32 cntl;			/* CNTL_TIMER, R/W */
92 	u32 load_tim;			/* LOAD_TIM,   W */
93 	u32 read_tim;			/* READ_TIM,   R */
94 } omap_mpu_timer_regs_t;
95 
96 #define omap_mpu_timer_base(n)						\
97 ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE +	\
98 				 (n)*OMAP_MPU_TIMER_OFFSET))
99 
100 static inline unsigned long omap_mpu_timer_read(int nr)
101 {
102 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
103 	return timer->read_tim;
104 }
105 
106 static inline void omap_mpu_set_autoreset(int nr)
107 {
108 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
109 
110 	timer->cntl = timer->cntl | MPU_TIMER_AR;
111 }
112 
113 static inline void omap_mpu_remove_autoreset(int nr)
114 {
115 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
116 
117 	timer->cntl = timer->cntl & ~MPU_TIMER_AR;
118 }
119 
120 static inline void omap_mpu_timer_start(int nr, unsigned long load_val,
121 					int autoreset)
122 {
123 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
124 	unsigned int timerflags = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_ST);
125 
126 	if (autoreset) timerflags |= MPU_TIMER_AR;
127 
128 	timer->cntl = MPU_TIMER_CLOCK_ENABLE;
129 	udelay(1);
130 	timer->load_tim = load_val;
131         udelay(1);
132 	timer->cntl = timerflags;
133 }
134 
135 static inline void omap_mpu_timer_stop(int nr)
136 {
137 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
138 
139 	timer->cntl &= ~MPU_TIMER_ST;
140 }
141 
142 /*
143  * ---------------------------------------------------------------------------
144  * MPU timer 1 ... count down to zero, interrupt, reload
145  * ---------------------------------------------------------------------------
146  */
147 static int omap_mpu_set_next_event(unsigned long cycles,
148 				   struct clock_event_device *evt)
149 {
150 	omap_mpu_timer_start(0, cycles, 0);
151 	return 0;
152 }
153 
154 static void omap_mpu_set_mode(enum clock_event_mode mode,
155 			      struct clock_event_device *evt)
156 {
157 	switch (mode) {
158 	case CLOCK_EVT_MODE_PERIODIC:
159 		omap_mpu_set_autoreset(0);
160 		break;
161 	case CLOCK_EVT_MODE_ONESHOT:
162 		omap_mpu_timer_stop(0);
163 		omap_mpu_remove_autoreset(0);
164 		break;
165 	case CLOCK_EVT_MODE_UNUSED:
166 	case CLOCK_EVT_MODE_SHUTDOWN:
167 	case CLOCK_EVT_MODE_RESUME:
168 		break;
169 	}
170 }
171 
172 static struct clock_event_device clockevent_mpu_timer1 = {
173 	.name		= "mpu_timer1",
174 	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
175 	.shift		= 32,
176 	.set_next_event	= omap_mpu_set_next_event,
177 	.set_mode	= omap_mpu_set_mode,
178 };
179 
180 static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id)
181 {
182 	struct clock_event_device *evt = &clockevent_mpu_timer1;
183 
184 	evt->event_handler(evt);
185 
186 	return IRQ_HANDLED;
187 }
188 
189 static struct irqaction omap_mpu_timer1_irq = {
190 	.name		= "mpu_timer1",
191 	.flags		= IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
192 	.handler	= omap_mpu_timer1_interrupt,
193 };
194 
195 static __init void omap_init_mpu_timer(unsigned long rate)
196 {
197 	set_cyc2ns_scale(rate / 1000);
198 
199 	setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
200 	omap_mpu_timer_start(0, (rate / HZ) - 1, 1);
201 
202 	clockevent_mpu_timer1.mult = div_sc(rate, NSEC_PER_SEC,
203 					    clockevent_mpu_timer1.shift);
204 	clockevent_mpu_timer1.max_delta_ns =
205 		clockevent_delta2ns(-1, &clockevent_mpu_timer1);
206 	clockevent_mpu_timer1.min_delta_ns =
207 		clockevent_delta2ns(1, &clockevent_mpu_timer1);
208 
209 	clockevent_mpu_timer1.cpumask = cpumask_of_cpu(0);
210 	clockevents_register_device(&clockevent_mpu_timer1);
211 }
212 
213 
214 /*
215  * ---------------------------------------------------------------------------
216  * MPU timer 2 ... free running 32-bit clock source and scheduler clock
217  * ---------------------------------------------------------------------------
218  */
219 
220 static unsigned long omap_mpu_timer2_overflows;
221 
222 static irqreturn_t omap_mpu_timer2_interrupt(int irq, void *dev_id)
223 {
224 	omap_mpu_timer2_overflows++;
225 	return IRQ_HANDLED;
226 }
227 
228 static struct irqaction omap_mpu_timer2_irq = {
229 	.name		= "mpu_timer2",
230 	.flags		= IRQF_DISABLED,
231 	.handler	= omap_mpu_timer2_interrupt,
232 };
233 
234 static cycle_t mpu_read(void)
235 {
236 	return ~omap_mpu_timer_read(1);
237 }
238 
239 static struct clocksource clocksource_mpu = {
240 	.name		= "mpu_timer2",
241 	.rating		= 300,
242 	.read		= mpu_read,
243 	.mask		= CLOCKSOURCE_MASK(32),
244 	.shift		= 24,
245 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
246 };
247 
248 static void __init omap_init_clocksource(unsigned long rate)
249 {
250 	static char err[] __initdata = KERN_ERR
251 			"%s: can't register clocksource!\n";
252 
253 	clocksource_mpu.mult
254 		= clocksource_khz2mult(rate/1000, clocksource_mpu.shift);
255 
256 	setup_irq(INT_TIMER2, &omap_mpu_timer2_irq);
257 	omap_mpu_timer_start(1, ~0, 1);
258 
259 	if (clocksource_register(&clocksource_mpu))
260 		printk(err, clocksource_mpu.name);
261 }
262 
263 
264 /*
265  * Scheduler clock - returns current time in nanosec units.
266  */
267 unsigned long long sched_clock(void)
268 {
269 	unsigned long ticks = 0 - omap_mpu_timer_read(1);
270 	unsigned long long ticks64;
271 
272 	ticks64 = omap_mpu_timer2_overflows;
273 	ticks64 <<= 32;
274 	ticks64 |= ticks;
275 
276 	return cycles_2_ns(ticks64);
277 }
278 
279 /*
280  * ---------------------------------------------------------------------------
281  * Timer initialization
282  * ---------------------------------------------------------------------------
283  */
284 static void __init omap_timer_init(void)
285 {
286 	struct clk	*ck_ref = clk_get(NULL, "ck_ref");
287 	unsigned long	rate;
288 
289 	BUG_ON(IS_ERR(ck_ref));
290 
291 	rate = clk_get_rate(ck_ref);
292 	clk_put(ck_ref);
293 
294 	/* PTV = 0 */
295 	rate /= 2;
296 
297 	omap_init_mpu_timer(rate);
298 	omap_init_clocksource(rate);
299 }
300 
301 struct sys_timer omap_timer = {
302 	.init		= omap_timer_init,
303 };
304