xref: /openbmc/linux/arch/arm/mach-omap1/time.c (revision 643d1f7f)
1 /*
2  * linux/arch/arm/mach-omap1/time.c
3  *
4  * OMAP Timers
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  * Partial timer rewrite and additional dynamic tick timer support by
8  * Tony Lindgen <tony@atomide.com> and
9  * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
10  *
11  * MPU timer code based on the older MPU timer code for OMAP
12  * Copyright (C) 2000 RidgeRun, Inc.
13  * Author: Greg Lonnon <glonnon@ridgerun.com>
14  *
15  * This program is free software; you can redistribute it and/or modify it
16  * under the terms of the GNU General Public License as published by the
17  * Free Software Foundation; either version 2 of the License, or (at your
18  * option) any later version.
19  *
20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
23  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
26  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
27  * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  * You should have received a copy of the  GNU General Public License along
32  * with this program; if not, write  to the Free Software Foundation, Inc.,
33  * 675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 #include <linux/kernel.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/spinlock.h>
42 #include <linux/clk.h>
43 #include <linux/err.h>
44 #include <linux/clocksource.h>
45 #include <linux/clockchips.h>
46 
47 #include <asm/system.h>
48 #include <asm/hardware.h>
49 #include <asm/io.h>
50 #include <asm/leds.h>
51 #include <asm/irq.h>
52 #include <asm/mach/irq.h>
53 #include <asm/mach/time.h>
54 
55 
56 #define OMAP_MPU_TIMER_BASE		OMAP_MPU_TIMER1_BASE
57 #define OMAP_MPU_TIMER_OFFSET		0x100
58 
59 /* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c,
60  * converted to use kHz by Kevin Hilman */
61 /* convert from cycles(64bits) => nanoseconds (64bits)
62  *  basic equation:
63  *		ns = cycles / (freq / ns_per_sec)
64  *		ns = cycles * (ns_per_sec / freq)
65  *		ns = cycles * (10^9 / (cpu_khz * 10^3))
66  *		ns = cycles * (10^6 / cpu_khz)
67  *
68  *	Then we use scaling math (suggested by george at mvista.com) to get:
69  *		ns = cycles * (10^6 * SC / cpu_khz / SC
70  *		ns = cycles * cyc2ns_scale / SC
71  *
72  *	And since SC is a constant power of two, we can convert the div
73  *  into a shift.
74  *			-johnstul at us.ibm.com "math is hard, lets go shopping!"
75  */
76 static unsigned long cyc2ns_scale;
77 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
78 
79 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
80 {
81 	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
82 }
83 
84 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
85 {
86 	return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
87 }
88 
89 
90 typedef struct {
91 	u32 cntl;			/* CNTL_TIMER, R/W */
92 	u32 load_tim;			/* LOAD_TIM,   W */
93 	u32 read_tim;			/* READ_TIM,   R */
94 } omap_mpu_timer_regs_t;
95 
96 #define omap_mpu_timer_base(n)						\
97 ((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE +	\
98 				 (n)*OMAP_MPU_TIMER_OFFSET))
99 
100 static inline unsigned long omap_mpu_timer_read(int nr)
101 {
102 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
103 	return timer->read_tim;
104 }
105 
106 static inline void omap_mpu_set_autoreset(int nr)
107 {
108 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
109 
110 	timer->cntl = timer->cntl | MPU_TIMER_AR;
111 }
112 
113 static inline void omap_mpu_remove_autoreset(int nr)
114 {
115 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
116 
117 	timer->cntl = timer->cntl & ~MPU_TIMER_AR;
118 }
119 
120 static inline void omap_mpu_timer_start(int nr, unsigned long load_val,
121 					int autoreset)
122 {
123 	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr);
124 	unsigned int timerflags = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_ST);
125 
126 	if (autoreset) timerflags |= MPU_TIMER_AR;
127 
128 	timer->cntl = MPU_TIMER_CLOCK_ENABLE;
129 	udelay(1);
130 	timer->load_tim = load_val;
131         udelay(1);
132 	timer->cntl = timerflags;
133 }
134 
135 /*
136  * ---------------------------------------------------------------------------
137  * MPU timer 1 ... count down to zero, interrupt, reload
138  * ---------------------------------------------------------------------------
139  */
140 static int omap_mpu_set_next_event(unsigned long cycles,
141 				    struct clock_event_device *evt)
142 {
143 	omap_mpu_timer_start(0, cycles, 0);
144 	return 0;
145 }
146 
147 static void omap_mpu_set_mode(enum clock_event_mode mode,
148 			      struct clock_event_device *evt)
149 {
150 	switch (mode) {
151 	case CLOCK_EVT_MODE_PERIODIC:
152 		omap_mpu_set_autoreset(0);
153 		break;
154 	case CLOCK_EVT_MODE_ONESHOT:
155 		omap_mpu_remove_autoreset(0);
156 		break;
157 	case CLOCK_EVT_MODE_UNUSED:
158 	case CLOCK_EVT_MODE_SHUTDOWN:
159 	case CLOCK_EVT_MODE_RESUME:
160 		break;
161 	}
162 }
163 
164 static struct clock_event_device clockevent_mpu_timer1 = {
165 	.name		= "mpu_timer1",
166 	.features       = CLOCK_EVT_FEAT_PERIODIC, CLOCK_EVT_FEAT_ONESHOT,
167 	.shift		= 32,
168 	.set_next_event	= omap_mpu_set_next_event,
169 	.set_mode	= omap_mpu_set_mode,
170 };
171 
172 static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id)
173 {
174 	struct clock_event_device *evt = &clockevent_mpu_timer1;
175 
176 	evt->event_handler(evt);
177 
178 	return IRQ_HANDLED;
179 }
180 
181 static struct irqaction omap_mpu_timer1_irq = {
182 	.name		= "mpu_timer1",
183 	.flags		= IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
184 	.handler	= omap_mpu_timer1_interrupt,
185 };
186 
187 static __init void omap_init_mpu_timer(unsigned long rate)
188 {
189 	set_cyc2ns_scale(rate / 1000);
190 
191 	setup_irq(INT_TIMER1, &omap_mpu_timer1_irq);
192 	omap_mpu_timer_start(0, (rate / HZ) - 1, 1);
193 
194 	clockevent_mpu_timer1.mult = div_sc(rate, NSEC_PER_SEC,
195 					    clockevent_mpu_timer1.shift);
196 	clockevent_mpu_timer1.max_delta_ns =
197 		clockevent_delta2ns(-1, &clockevent_mpu_timer1);
198 	clockevent_mpu_timer1.min_delta_ns =
199 		clockevent_delta2ns(1, &clockevent_mpu_timer1);
200 
201 	clockevent_mpu_timer1.cpumask = cpumask_of_cpu(0);
202 	clockevents_register_device(&clockevent_mpu_timer1);
203 }
204 
205 
206 /*
207  * ---------------------------------------------------------------------------
208  * MPU timer 2 ... free running 32-bit clock source and scheduler clock
209  * ---------------------------------------------------------------------------
210  */
211 
212 static unsigned long omap_mpu_timer2_overflows;
213 
214 static irqreturn_t omap_mpu_timer2_interrupt(int irq, void *dev_id)
215 {
216 	omap_mpu_timer2_overflows++;
217 	return IRQ_HANDLED;
218 }
219 
220 static struct irqaction omap_mpu_timer2_irq = {
221 	.name		= "mpu_timer2",
222 	.flags		= IRQF_DISABLED,
223 	.handler	= omap_mpu_timer2_interrupt,
224 };
225 
226 static cycle_t mpu_read(void)
227 {
228 	return ~omap_mpu_timer_read(1);
229 }
230 
231 static struct clocksource clocksource_mpu = {
232 	.name		= "mpu_timer2",
233 	.rating		= 300,
234 	.read		= mpu_read,
235 	.mask		= CLOCKSOURCE_MASK(32),
236 	.shift		= 24,
237 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239 
240 static void __init omap_init_clocksource(unsigned long rate)
241 {
242 	static char err[] __initdata = KERN_ERR
243 			"%s: can't register clocksource!\n";
244 
245 	clocksource_mpu.mult
246 		= clocksource_khz2mult(rate/1000, clocksource_mpu.shift);
247 
248 	setup_irq(INT_TIMER2, &omap_mpu_timer2_irq);
249 	omap_mpu_timer_start(1, ~0, 1);
250 
251 	if (clocksource_register(&clocksource_mpu))
252 		printk(err, clocksource_mpu.name);
253 }
254 
255 
256 /*
257  * Scheduler clock - returns current time in nanosec units.
258  */
259 unsigned long long sched_clock(void)
260 {
261 	unsigned long ticks = 0 - omap_mpu_timer_read(1);
262 	unsigned long long ticks64;
263 
264 	ticks64 = omap_mpu_timer2_overflows;
265 	ticks64 <<= 32;
266 	ticks64 |= ticks;
267 
268 	return cycles_2_ns(ticks64);
269 }
270 
271 /*
272  * ---------------------------------------------------------------------------
273  * Timer initialization
274  * ---------------------------------------------------------------------------
275  */
276 static void __init omap_timer_init(void)
277 {
278 	struct clk	*ck_ref = clk_get(NULL, "ck_ref");
279 	unsigned long	rate;
280 
281 	BUG_ON(IS_ERR(ck_ref));
282 
283 	rate = clk_get_rate(ck_ref);
284 	clk_put(ck_ref);
285 
286 	/* PTV = 0 */
287 	rate /= 2;
288 
289 	omap_init_mpu_timer(rate);
290 	omap_init_clocksource(rate);
291 }
292 
293 struct sys_timer omap_timer = {
294 	.init		= omap_timer_init,
295 };
296