xref: /openbmc/linux/arch/arm/mach-omap1/clock.c (revision 39a80c7f)
1 /*
2  *  linux/arch/arm/mach-omap1/clock.c
3  *
4  *  Copyright (C) 2004 - 2005 Nokia corporation
5  *  Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
6  *
7  *  Modified to use omap shared clock framework by
8  *  Tony Lindgren <tony@atomide.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
20 #include <linux/io.h>
21 
22 #include <asm/mach-types.h>
23 #include <asm/clkdev.h>
24 
25 #include <mach/cpu.h>
26 #include <mach/usb.h>
27 #include <mach/clock.h>
28 #include <mach/sram.h>
29 
30 static const struct clkops clkops_generic;
31 static const struct clkops clkops_uart;
32 static const struct clkops clkops_dspck;
33 
34 #include "clock.h"
35 
36 static int clk_omap1_dummy_enable(struct clk *clk)
37 {
38 	return 0;
39 }
40 
41 static void clk_omap1_dummy_disable(struct clk *clk)
42 {
43 }
44 
45 static const struct clkops clkops_dummy = {
46 	.enable = clk_omap1_dummy_enable,
47 	.disable = clk_omap1_dummy_disable,
48 };
49 
50 static struct clk dummy_ck = {
51 	.name	= "dummy",
52 	.ops	= &clkops_dummy,
53 	.flags	= RATE_FIXED,
54 };
55 
56 struct omap_clk {
57 	u32		cpu;
58 	struct clk_lookup lk;
59 };
60 
61 #define CLK(dev, con, ck, cp) 		\
62 	{				\
63 		 .cpu = cp,		\
64 		.lk = {			\
65 			.dev_id = dev,	\
66 			.con_id = con,	\
67 			.clk = ck,	\
68 		},			\
69 	}
70 
71 #define CK_310	(1 << 0)
72 #define CK_730	(1 << 1)
73 #define CK_1510	(1 << 2)
74 #define CK_16XX	(1 << 3)
75 
76 static struct omap_clk omap_clks[] = {
77 	/* non-ULPD clocks */
78 	CLK(NULL,	"ck_ref",	&ck_ref,	CK_16XX | CK_1510 | CK_310),
79 	CLK(NULL,	"ck_dpll1",	&ck_dpll1,	CK_16XX | CK_1510 | CK_310),
80 	/* CK_GEN1 clocks */
81 	CLK(NULL,	"ck_dpll1out",	&ck_dpll1out.clk, CK_16XX),
82 	CLK(NULL,	"ck_sossi",	&sossi_ck,	CK_16XX),
83 	CLK(NULL,	"arm_ck",	&arm_ck,	CK_16XX | CK_1510 | CK_310),
84 	CLK(NULL,	"armper_ck",	&armper_ck.clk,	CK_16XX | CK_1510 | CK_310),
85 	CLK(NULL,	"arm_gpio_ck",	&arm_gpio_ck,	CK_1510 | CK_310),
86 	CLK(NULL,	"armxor_ck",	&armxor_ck.clk,	CK_16XX | CK_1510 | CK_310),
87 	CLK(NULL,	"armtim_ck",	&armtim_ck.clk,	CK_16XX | CK_1510 | CK_310),
88 	CLK("omap_wdt",	"fck",		&armwdt_ck.clk,	CK_16XX | CK_1510 | CK_310),
89 	CLK(NULL,	"arminth_ck",	&arminth_ck1510, CK_1510 | CK_310),
90 	CLK(NULL,	"arminth_ck",	&arminth_ck16xx, CK_16XX),
91 	/* CK_GEN2 clocks */
92 	CLK(NULL,	"dsp_ck",	&dsp_ck,	CK_16XX | CK_1510 | CK_310),
93 	CLK(NULL,	"dspmmu_ck",	&dspmmu_ck,	CK_16XX | CK_1510 | CK_310),
94 	CLK(NULL,	"dspper_ck",	&dspper_ck,	CK_16XX | CK_1510 | CK_310),
95 	CLK(NULL,	"dspxor_ck",	&dspxor_ck,	CK_16XX | CK_1510 | CK_310),
96 	CLK(NULL,	"dsptim_ck",	&dsptim_ck,	CK_16XX | CK_1510 | CK_310),
97 	/* CK_GEN3 clocks */
98 	CLK(NULL,	"tc_ck",	&tc_ck.clk,	CK_16XX | CK_1510 | CK_310 | CK_730),
99 	CLK(NULL,	"tipb_ck",	&tipb_ck,	CK_1510 | CK_310),
100 	CLK(NULL,	"l3_ocpi_ck",	&l3_ocpi_ck,	CK_16XX),
101 	CLK(NULL,	"tc1_ck",	&tc1_ck,	CK_16XX),
102 	CLK(NULL,	"tc2_ck",	&tc2_ck,	CK_16XX),
103 	CLK(NULL,	"dma_ck",	&dma_ck,	CK_16XX | CK_1510 | CK_310),
104 	CLK(NULL,	"dma_lcdfree_ck", &dma_lcdfree_ck, CK_16XX),
105 	CLK(NULL,	"api_ck",	&api_ck.clk,	CK_16XX | CK_1510 | CK_310),
106 	CLK(NULL,	"lb_ck",	&lb_ck.clk,	CK_1510 | CK_310),
107 	CLK(NULL,	"rhea1_ck",	&rhea1_ck,	CK_16XX),
108 	CLK(NULL,	"rhea2_ck",	&rhea2_ck,	CK_16XX),
109 	CLK(NULL,	"lcd_ck",	&lcd_ck_16xx,	CK_16XX | CK_730),
110 	CLK(NULL,	"lcd_ck",	&lcd_ck_1510.clk, CK_1510 | CK_310),
111 	/* ULPD clocks */
112 	CLK(NULL,	"uart1_ck",	&uart1_1510,	CK_1510 | CK_310),
113 	CLK(NULL,	"uart1_ck",	&uart1_16xx.clk, CK_16XX),
114 	CLK(NULL,	"uart2_ck",	&uart2_ck,	CK_16XX | CK_1510 | CK_310),
115 	CLK(NULL,	"uart3_ck",	&uart3_1510,	CK_1510 | CK_310),
116 	CLK(NULL,	"uart3_ck",	&uart3_16xx.clk, CK_16XX),
117 	CLK(NULL,	"usb_clko",	&usb_clko,	CK_16XX | CK_1510 | CK_310),
118 	CLK(NULL,	"usb_hhc_ck",	&usb_hhc_ck1510, CK_1510 | CK_310),
119 	CLK(NULL,	"usb_hhc_ck",	&usb_hhc_ck16xx, CK_16XX),
120 	CLK(NULL,	"usb_dc_ck",	&usb_dc_ck,	CK_16XX),
121 	CLK(NULL,	"mclk",		&mclk_1510,	CK_1510 | CK_310),
122 	CLK(NULL,	"mclk",		&mclk_16xx,	CK_16XX),
123 	CLK(NULL,	"bclk",		&bclk_1510,	CK_1510 | CK_310),
124 	CLK(NULL,	"bclk",		&bclk_16xx,	CK_16XX),
125 	CLK("mmci-omap.0", "mmc_ck",	&mmc1_ck,	CK_16XX | CK_1510 | CK_310),
126 	CLK("mmci-omap.1", "mmc_ck",	&mmc2_ck,	CK_16XX),
127 	/* Virtual clocks */
128 	CLK(NULL,	"mpu",		&virtual_ck_mpu, CK_16XX | CK_1510 | CK_310),
129 	CLK("i2c_omap.1", "i2c_fck",	&i2c_fck,	CK_16XX | CK_1510 | CK_310),
130 	CLK("i2c_omap.1", "i2c_ick",	&i2c_ick,	CK_16XX),
131 };
132 
133 static int omap1_clk_enable_generic(struct clk * clk);
134 static int omap1_clk_enable(struct clk *clk);
135 static void omap1_clk_disable_generic(struct clk * clk);
136 static void omap1_clk_disable(struct clk *clk);
137 
138 __u32 arm_idlect1_mask;
139 
140 /*-------------------------------------------------------------------------
141  * Omap1 specific clock functions
142  *-------------------------------------------------------------------------*/
143 
144 static void omap1_watchdog_recalc(struct clk * clk)
145 {
146 	clk->rate = clk->parent->rate / 14;
147 }
148 
149 static void omap1_uart_recalc(struct clk * clk)
150 {
151 	unsigned int val = omap_readl(clk->enable_reg);
152 	if (val & clk->enable_bit)
153 		clk->rate = 48000000;
154 	else
155 		clk->rate = 12000000;
156 }
157 
158 static void omap1_sossi_recalc(struct clk *clk)
159 {
160 	u32 div = omap_readl(MOD_CONF_CTRL_1);
161 
162 	div = (div >> 17) & 0x7;
163 	div++;
164 	clk->rate = clk->parent->rate / div;
165 }
166 
167 static int omap1_clk_enable_dsp_domain(struct clk *clk)
168 {
169 	int retval;
170 
171 	retval = omap1_clk_enable(&api_ck.clk);
172 	if (!retval) {
173 		retval = omap1_clk_enable_generic(clk);
174 		omap1_clk_disable(&api_ck.clk);
175 	}
176 
177 	return retval;
178 }
179 
180 static void omap1_clk_disable_dsp_domain(struct clk *clk)
181 {
182 	if (omap1_clk_enable(&api_ck.clk) == 0) {
183 		omap1_clk_disable_generic(clk);
184 		omap1_clk_disable(&api_ck.clk);
185 	}
186 }
187 
188 static const struct clkops clkops_dspck = {
189 	.enable		= &omap1_clk_enable_dsp_domain,
190 	.disable	= &omap1_clk_disable_dsp_domain,
191 };
192 
193 static int omap1_clk_enable_uart_functional(struct clk *clk)
194 {
195 	int ret;
196 	struct uart_clk *uclk;
197 
198 	ret = omap1_clk_enable_generic(clk);
199 	if (ret == 0) {
200 		/* Set smart idle acknowledgement mode */
201 		uclk = (struct uart_clk *)clk;
202 		omap_writeb((omap_readb(uclk->sysc_addr) & ~0x10) | 8,
203 			    uclk->sysc_addr);
204 	}
205 
206 	return ret;
207 }
208 
209 static void omap1_clk_disable_uart_functional(struct clk *clk)
210 {
211 	struct uart_clk *uclk;
212 
213 	/* Set force idle acknowledgement mode */
214 	uclk = (struct uart_clk *)clk;
215 	omap_writeb((omap_readb(uclk->sysc_addr) & ~0x18), uclk->sysc_addr);
216 
217 	omap1_clk_disable_generic(clk);
218 }
219 
220 static const struct clkops clkops_uart = {
221 	.enable		= &omap1_clk_enable_uart_functional,
222 	.disable	= &omap1_clk_disable_uart_functional,
223 };
224 
225 static void omap1_clk_allow_idle(struct clk *clk)
226 {
227 	struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
228 
229 	if (!(clk->flags & CLOCK_IDLE_CONTROL))
230 		return;
231 
232 	if (iclk->no_idle_count > 0 && !(--iclk->no_idle_count))
233 		arm_idlect1_mask |= 1 << iclk->idlect_shift;
234 }
235 
236 static void omap1_clk_deny_idle(struct clk *clk)
237 {
238 	struct arm_idlect1_clk * iclk = (struct arm_idlect1_clk *)clk;
239 
240 	if (!(clk->flags & CLOCK_IDLE_CONTROL))
241 		return;
242 
243 	if (iclk->no_idle_count++ == 0)
244 		arm_idlect1_mask &= ~(1 << iclk->idlect_shift);
245 }
246 
247 static __u16 verify_ckctl_value(__u16 newval)
248 {
249 	/* This function checks for following limitations set
250 	 * by the hardware (all conditions must be true):
251 	 * DSPMMU_CK == DSP_CK  or  DSPMMU_CK == DSP_CK/2
252 	 * ARM_CK >= TC_CK
253 	 * DSP_CK >= TC_CK
254 	 * DSPMMU_CK >= TC_CK
255 	 *
256 	 * In addition following rules are enforced:
257 	 * LCD_CK <= TC_CK
258 	 * ARMPER_CK <= TC_CK
259 	 *
260 	 * However, maximum frequencies are not checked for!
261 	 */
262 	__u8 per_exp;
263 	__u8 lcd_exp;
264 	__u8 arm_exp;
265 	__u8 dsp_exp;
266 	__u8 tc_exp;
267 	__u8 dspmmu_exp;
268 
269 	per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
270 	lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
271 	arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
272 	dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
273 	tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
274 	dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
275 
276 	if (dspmmu_exp < dsp_exp)
277 		dspmmu_exp = dsp_exp;
278 	if (dspmmu_exp > dsp_exp+1)
279 		dspmmu_exp = dsp_exp+1;
280 	if (tc_exp < arm_exp)
281 		tc_exp = arm_exp;
282 	if (tc_exp < dspmmu_exp)
283 		tc_exp = dspmmu_exp;
284 	if (tc_exp > lcd_exp)
285 		lcd_exp = tc_exp;
286 	if (tc_exp > per_exp)
287 		per_exp = tc_exp;
288 
289 	newval &= 0xf000;
290 	newval |= per_exp << CKCTL_PERDIV_OFFSET;
291 	newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
292 	newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
293 	newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
294 	newval |= tc_exp << CKCTL_TCDIV_OFFSET;
295 	newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
296 
297 	return newval;
298 }
299 
300 static int calc_dsor_exp(struct clk *clk, unsigned long rate)
301 {
302 	/* Note: If target frequency is too low, this function will return 4,
303 	 * which is invalid value. Caller must check for this value and act
304 	 * accordingly.
305 	 *
306 	 * Note: This function does not check for following limitations set
307 	 * by the hardware (all conditions must be true):
308 	 * DSPMMU_CK == DSP_CK  or  DSPMMU_CK == DSP_CK/2
309 	 * ARM_CK >= TC_CK
310 	 * DSP_CK >= TC_CK
311 	 * DSPMMU_CK >= TC_CK
312 	 */
313 	unsigned long realrate;
314 	struct clk * parent;
315 	unsigned  dsor_exp;
316 
317 	parent = clk->parent;
318 	if (unlikely(parent == NULL))
319 		return -EIO;
320 
321 	realrate = parent->rate;
322 	for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
323 		if (realrate <= rate)
324 			break;
325 
326 		realrate /= 2;
327 	}
328 
329 	return dsor_exp;
330 }
331 
332 static void omap1_ckctl_recalc(struct clk * clk)
333 {
334 	int dsor;
335 
336 	/* Calculate divisor encoded as 2-bit exponent */
337 	dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
338 
339 	if (unlikely(clk->rate == clk->parent->rate / dsor))
340 		return; /* No change, quick exit */
341 	clk->rate = clk->parent->rate / dsor;
342 }
343 
344 static void omap1_ckctl_recalc_dsp_domain(struct clk * clk)
345 {
346 	int dsor;
347 
348 	/* Calculate divisor encoded as 2-bit exponent
349 	 *
350 	 * The clock control bits are in DSP domain,
351 	 * so api_ck is needed for access.
352 	 * Note that DSP_CKCTL virt addr = phys addr, so
353 	 * we must use __raw_readw() instead of omap_readw().
354 	 */
355 	omap1_clk_enable(&api_ck.clk);
356 	dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
357 	omap1_clk_disable(&api_ck.clk);
358 
359 	if (unlikely(clk->rate == clk->parent->rate / dsor))
360 		return; /* No change, quick exit */
361 	clk->rate = clk->parent->rate / dsor;
362 }
363 
364 /* MPU virtual clock functions */
365 static int omap1_select_table_rate(struct clk * clk, unsigned long rate)
366 {
367 	/* Find the highest supported frequency <= rate and switch to it */
368 	struct mpu_rate * ptr;
369 
370 	if (clk != &virtual_ck_mpu)
371 		return -EINVAL;
372 
373 	for (ptr = rate_table; ptr->rate; ptr++) {
374 		if (ptr->xtal != ck_ref.rate)
375 			continue;
376 
377 		/* DPLL1 cannot be reprogrammed without risking system crash */
378 		if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
379 			continue;
380 
381 		/* Can check only after xtal frequency check */
382 		if (ptr->rate <= rate)
383 			break;
384 	}
385 
386 	if (!ptr->rate)
387 		return -EINVAL;
388 
389 	/*
390 	 * In most cases we should not need to reprogram DPLL.
391 	 * Reprogramming the DPLL is tricky, it must be done from SRAM.
392 	 * (on 730, bit 13 must always be 1)
393 	 */
394 	if (cpu_is_omap730())
395 		omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val | 0x2000);
396 	else
397 		omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
398 
399 	ck_dpll1.rate = ptr->pll_rate;
400 	return 0;
401 }
402 
403 static int omap1_clk_set_rate_dsp_domain(struct clk *clk, unsigned long rate)
404 {
405 	int dsor_exp;
406 	u16 regval;
407 
408 	dsor_exp = calc_dsor_exp(clk, rate);
409 	if (dsor_exp > 3)
410 		dsor_exp = -EINVAL;
411 	if (dsor_exp < 0)
412 		return dsor_exp;
413 
414 	regval = __raw_readw(DSP_CKCTL);
415 	regval &= ~(3 << clk->rate_offset);
416 	regval |= dsor_exp << clk->rate_offset;
417 	__raw_writew(regval, DSP_CKCTL);
418 	clk->rate = clk->parent->rate / (1 << dsor_exp);
419 
420 	return 0;
421 }
422 
423 static long omap1_clk_round_rate_ckctl_arm(struct clk *clk, unsigned long rate)
424 {
425 	int dsor_exp = calc_dsor_exp(clk, rate);
426 	if (dsor_exp < 0)
427 		return dsor_exp;
428 	if (dsor_exp > 3)
429 		dsor_exp = 3;
430 	return clk->parent->rate / (1 << dsor_exp);
431 }
432 
433 static int omap1_clk_set_rate_ckctl_arm(struct clk *clk, unsigned long rate)
434 {
435 	int dsor_exp;
436 	u16 regval;
437 
438 	dsor_exp = calc_dsor_exp(clk, rate);
439 	if (dsor_exp > 3)
440 		dsor_exp = -EINVAL;
441 	if (dsor_exp < 0)
442 		return dsor_exp;
443 
444 	regval = omap_readw(ARM_CKCTL);
445 	regval &= ~(3 << clk->rate_offset);
446 	regval |= dsor_exp << clk->rate_offset;
447 	regval = verify_ckctl_value(regval);
448 	omap_writew(regval, ARM_CKCTL);
449 	clk->rate = clk->parent->rate / (1 << dsor_exp);
450 	return 0;
451 }
452 
453 static long omap1_round_to_table_rate(struct clk * clk, unsigned long rate)
454 {
455 	/* Find the highest supported frequency <= rate */
456 	struct mpu_rate * ptr;
457 	long  highest_rate;
458 
459 	if (clk != &virtual_ck_mpu)
460 		return -EINVAL;
461 
462 	highest_rate = -EINVAL;
463 
464 	for (ptr = rate_table; ptr->rate; ptr++) {
465 		if (ptr->xtal != ck_ref.rate)
466 			continue;
467 
468 		highest_rate = ptr->rate;
469 
470 		/* Can check only after xtal frequency check */
471 		if (ptr->rate <= rate)
472 			break;
473 	}
474 
475 	return highest_rate;
476 }
477 
478 static unsigned calc_ext_dsor(unsigned long rate)
479 {
480 	unsigned dsor;
481 
482 	/* MCLK and BCLK divisor selection is not linear:
483 	 * freq = 96MHz / dsor
484 	 *
485 	 * RATIO_SEL range: dsor <-> RATIO_SEL
486 	 * 0..6: (RATIO_SEL+2) <-> (dsor-2)
487 	 * 6..48:  (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
488 	 * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
489 	 * can not be used.
490 	 */
491 	for (dsor = 2; dsor < 96; ++dsor) {
492 		if ((dsor & 1) && dsor > 8)
493 			continue;
494 		if (rate >= 96000000 / dsor)
495 			break;
496 	}
497 	return dsor;
498 }
499 
500 /* Only needed on 1510 */
501 static int omap1_set_uart_rate(struct clk * clk, unsigned long rate)
502 {
503 	unsigned int val;
504 
505 	val = omap_readl(clk->enable_reg);
506 	if (rate == 12000000)
507 		val &= ~(1 << clk->enable_bit);
508 	else if (rate == 48000000)
509 		val |= (1 << clk->enable_bit);
510 	else
511 		return -EINVAL;
512 	omap_writel(val, clk->enable_reg);
513 	clk->rate = rate;
514 
515 	return 0;
516 }
517 
518 /* External clock (MCLK & BCLK) functions */
519 static int omap1_set_ext_clk_rate(struct clk * clk, unsigned long rate)
520 {
521 	unsigned dsor;
522 	__u16 ratio_bits;
523 
524 	dsor = calc_ext_dsor(rate);
525 	clk->rate = 96000000 / dsor;
526 	if (dsor > 8)
527 		ratio_bits = ((dsor - 8) / 2 + 6) << 2;
528 	else
529 		ratio_bits = (dsor - 2) << 2;
530 
531 	ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
532 	omap_writew(ratio_bits, clk->enable_reg);
533 
534 	return 0;
535 }
536 
537 static int omap1_set_sossi_rate(struct clk *clk, unsigned long rate)
538 {
539 	u32 l;
540 	int div;
541 	unsigned long p_rate;
542 
543 	p_rate = clk->parent->rate;
544 	/* Round towards slower frequency */
545 	div = (p_rate + rate - 1) / rate;
546 	div--;
547 	if (div < 0 || div > 7)
548 		return -EINVAL;
549 
550 	l = omap_readl(MOD_CONF_CTRL_1);
551 	l &= ~(7 << 17);
552 	l |= div << 17;
553 	omap_writel(l, MOD_CONF_CTRL_1);
554 
555 	clk->rate = p_rate / (div + 1);
556 
557 	return 0;
558 }
559 
560 static long omap1_round_ext_clk_rate(struct clk * clk, unsigned long rate)
561 {
562 	return 96000000 / calc_ext_dsor(rate);
563 }
564 
565 static void omap1_init_ext_clk(struct clk * clk)
566 {
567 	unsigned dsor;
568 	__u16 ratio_bits;
569 
570 	/* Determine current rate and ensure clock is based on 96MHz APLL */
571 	ratio_bits = omap_readw(clk->enable_reg) & ~1;
572 	omap_writew(ratio_bits, clk->enable_reg);
573 
574 	ratio_bits = (ratio_bits & 0xfc) >> 2;
575 	if (ratio_bits > 6)
576 		dsor = (ratio_bits - 6) * 2 + 8;
577 	else
578 		dsor = ratio_bits + 2;
579 
580 	clk-> rate = 96000000 / dsor;
581 }
582 
583 static int omap1_clk_enable(struct clk *clk)
584 {
585 	int ret = 0;
586 	if (clk->usecount++ == 0) {
587 		if (likely(clk->parent)) {
588 			ret = omap1_clk_enable(clk->parent);
589 
590 			if (unlikely(ret != 0)) {
591 				clk->usecount--;
592 				return ret;
593 			}
594 
595 			if (clk->flags & CLOCK_NO_IDLE_PARENT)
596 				omap1_clk_deny_idle(clk->parent);
597 		}
598 
599 		ret = clk->ops->enable(clk);
600 
601 		if (unlikely(ret != 0) && clk->parent) {
602 			omap1_clk_disable(clk->parent);
603 			clk->usecount--;
604 		}
605 	}
606 
607 	return ret;
608 }
609 
610 static void omap1_clk_disable(struct clk *clk)
611 {
612 	if (clk->usecount > 0 && !(--clk->usecount)) {
613 		clk->ops->disable(clk);
614 		if (likely(clk->parent)) {
615 			omap1_clk_disable(clk->parent);
616 			if (clk->flags & CLOCK_NO_IDLE_PARENT)
617 				omap1_clk_allow_idle(clk->parent);
618 		}
619 	}
620 }
621 
622 static int omap1_clk_enable_generic(struct clk *clk)
623 {
624 	__u16 regval16;
625 	__u32 regval32;
626 
627 	if (unlikely(clk->enable_reg == NULL)) {
628 		printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
629 		       clk->name);
630 		return -EINVAL;
631 	}
632 
633 	if (clk->flags & ENABLE_REG_32BIT) {
634 		if (clk->flags & VIRTUAL_IO_ADDRESS) {
635 			regval32 = __raw_readl(clk->enable_reg);
636 			regval32 |= (1 << clk->enable_bit);
637 			__raw_writel(regval32, clk->enable_reg);
638 		} else {
639 			regval32 = omap_readl(clk->enable_reg);
640 			regval32 |= (1 << clk->enable_bit);
641 			omap_writel(regval32, clk->enable_reg);
642 		}
643 	} else {
644 		if (clk->flags & VIRTUAL_IO_ADDRESS) {
645 			regval16 = __raw_readw(clk->enable_reg);
646 			regval16 |= (1 << clk->enable_bit);
647 			__raw_writew(regval16, clk->enable_reg);
648 		} else {
649 			regval16 = omap_readw(clk->enable_reg);
650 			regval16 |= (1 << clk->enable_bit);
651 			omap_writew(regval16, clk->enable_reg);
652 		}
653 	}
654 
655 	return 0;
656 }
657 
658 static void omap1_clk_disable_generic(struct clk *clk)
659 {
660 	__u16 regval16;
661 	__u32 regval32;
662 
663 	if (clk->enable_reg == NULL)
664 		return;
665 
666 	if (clk->flags & ENABLE_REG_32BIT) {
667 		if (clk->flags & VIRTUAL_IO_ADDRESS) {
668 			regval32 = __raw_readl(clk->enable_reg);
669 			regval32 &= ~(1 << clk->enable_bit);
670 			__raw_writel(regval32, clk->enable_reg);
671 		} else {
672 			regval32 = omap_readl(clk->enable_reg);
673 			regval32 &= ~(1 << clk->enable_bit);
674 			omap_writel(regval32, clk->enable_reg);
675 		}
676 	} else {
677 		if (clk->flags & VIRTUAL_IO_ADDRESS) {
678 			regval16 = __raw_readw(clk->enable_reg);
679 			regval16 &= ~(1 << clk->enable_bit);
680 			__raw_writew(regval16, clk->enable_reg);
681 		} else {
682 			regval16 = omap_readw(clk->enable_reg);
683 			regval16 &= ~(1 << clk->enable_bit);
684 			omap_writew(regval16, clk->enable_reg);
685 		}
686 	}
687 }
688 
689 static const struct clkops clkops_generic = {
690 	.enable		= &omap1_clk_enable_generic,
691 	.disable	= &omap1_clk_disable_generic,
692 };
693 
694 static long omap1_clk_round_rate(struct clk *clk, unsigned long rate)
695 {
696 	if (clk->flags & RATE_FIXED)
697 		return clk->rate;
698 
699 	if (clk->round_rate != NULL)
700 		return clk->round_rate(clk, rate);
701 
702 	return clk->rate;
703 }
704 
705 static int omap1_clk_set_rate(struct clk *clk, unsigned long rate)
706 {
707 	int  ret = -EINVAL;
708 
709 	if (clk->set_rate)
710 		ret = clk->set_rate(clk, rate);
711 	return ret;
712 }
713 
714 /*-------------------------------------------------------------------------
715  * Omap1 clock reset and init functions
716  *-------------------------------------------------------------------------*/
717 
718 #ifdef CONFIG_OMAP_RESET_CLOCKS
719 
720 static void __init omap1_clk_disable_unused(struct clk *clk)
721 {
722 	__u32 regval32;
723 
724 	/* Clocks in the DSP domain need api_ck. Just assume bootloader
725 	 * has not enabled any DSP clocks */
726 	if (clk->enable_reg == DSP_IDLECT2) {
727 		printk(KERN_INFO "Skipping reset check for DSP domain "
728 		       "clock \"%s\"\n", clk->name);
729 		return;
730 	}
731 
732 	/* Is the clock already disabled? */
733 	if (clk->flags & ENABLE_REG_32BIT) {
734 		if (clk->flags & VIRTUAL_IO_ADDRESS)
735 			regval32 = __raw_readl(clk->enable_reg);
736 			else
737 				regval32 = omap_readl(clk->enable_reg);
738 	} else {
739 		if (clk->flags & VIRTUAL_IO_ADDRESS)
740 			regval32 = __raw_readw(clk->enable_reg);
741 		else
742 			regval32 = omap_readw(clk->enable_reg);
743 	}
744 
745 	if ((regval32 & (1 << clk->enable_bit)) == 0)
746 		return;
747 
748 	/* FIXME: This clock seems to be necessary but no-one
749 	 * has asked for its activation. */
750 	if (clk == &tc2_ck		/* FIX: pm.c (SRAM), CCP, Camera */
751 	    || clk == &ck_dpll1out.clk	/* FIX: SoSSI, SSR */
752 	    || clk == &arm_gpio_ck	/* FIX: GPIO code for 1510 */
753 		) {
754 		printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
755 		       clk->name);
756 		return;
757 	}
758 
759 	printk(KERN_INFO "Disabling unused clock \"%s\"... ", clk->name);
760 	clk->ops->disable(clk);
761 	printk(" done\n");
762 }
763 
764 #else
765 #define omap1_clk_disable_unused	NULL
766 #endif
767 
768 static struct clk_functions omap1_clk_functions = {
769 	.clk_enable		= omap1_clk_enable,
770 	.clk_disable		= omap1_clk_disable,
771 	.clk_round_rate		= omap1_clk_round_rate,
772 	.clk_set_rate		= omap1_clk_set_rate,
773 	.clk_disable_unused	= omap1_clk_disable_unused,
774 };
775 
776 int __init omap1_clk_init(void)
777 {
778 	struct omap_clk *c;
779 	const struct omap_clock_config *info;
780 	int crystal_type = 0; /* Default 12 MHz */
781 	u32 reg, cpu_mask;
782 
783 #ifdef CONFIG_DEBUG_LL
784 	/* Resets some clocks that may be left on from bootloader,
785 	 * but leaves serial clocks on.
786  	 */
787 	omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
788 #endif
789 
790 	/* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
791 	reg = omap_readw(SOFT_REQ_REG) & (1 << 4);
792 	omap_writew(reg, SOFT_REQ_REG);
793 	if (!cpu_is_omap15xx())
794 		omap_writew(0, SOFT_REQ_REG2);
795 
796 	clk_init(&omap1_clk_functions);
797 
798 	/* By default all idlect1 clocks are allowed to idle */
799 	arm_idlect1_mask = ~0;
800 
801 	cpu_mask = 0;
802 	if (cpu_is_omap16xx())
803 		cpu_mask |= CK_16XX;
804 	if (cpu_is_omap1510())
805 		cpu_mask |= CK_1510;
806 	if (cpu_is_omap730())
807 		cpu_mask |= CK_730;
808 	if (cpu_is_omap310())
809 		cpu_mask |= CK_310;
810 
811 	for (c = omap_clks; c < omap_clks + ARRAY_SIZE(omap_clks); c++)
812 		if (c->cpu & cpu_mask) {
813 			clkdev_add(&c->lk);
814 			clk_register(c->lk.clk);
815 		}
816 
817 	info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
818 	if (info != NULL) {
819 		if (!cpu_is_omap15xx())
820 			crystal_type = info->system_clock_type;
821 	}
822 
823 #if defined(CONFIG_ARCH_OMAP730)
824 	ck_ref.rate = 13000000;
825 #elif defined(CONFIG_ARCH_OMAP16XX)
826 	if (crystal_type == 2)
827 		ck_ref.rate = 19200000;
828 #endif
829 
830 	printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
831 	       omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
832 	       omap_readw(ARM_CKCTL));
833 
834 	/* We want to be in syncronous scalable mode */
835 	omap_writew(0x1000, ARM_SYSST);
836 
837 #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
838 	/* Use values set by bootloader. Determine PLL rate and recalculate
839 	 * dependent clocks as if kernel had changed PLL or divisors.
840 	 */
841 	{
842 		unsigned pll_ctl_val = omap_readw(DPLL_CTL);
843 
844 		ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
845 		if (pll_ctl_val & 0x10) {
846 			/* PLL enabled, apply multiplier and divisor */
847 			if (pll_ctl_val & 0xf80)
848 				ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
849 			ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
850 		} else {
851 			/* PLL disabled, apply bypass divisor */
852 			switch (pll_ctl_val & 0xc) {
853 			case 0:
854 				break;
855 			case 0x4:
856 				ck_dpll1.rate /= 2;
857 				break;
858 			default:
859 				ck_dpll1.rate /= 4;
860 				break;
861 			}
862 		}
863 	}
864 #else
865 	/* Find the highest supported frequency and enable it */
866 	if (omap1_select_table_rate(&virtual_ck_mpu, ~0)) {
867 		printk(KERN_ERR "System frequencies not set. Check your config.\n");
868 		/* Guess sane values (60MHz) */
869 		omap_writew(0x2290, DPLL_CTL);
870 		omap_writew(cpu_is_omap730() ? 0x3005 : 0x1005, ARM_CKCTL);
871 		ck_dpll1.rate = 60000000;
872 	}
873 #endif
874 	propagate_rate(&ck_dpll1);
875 	/* Cache rates for clocks connected to ck_ref (not dpll1) */
876 	propagate_rate(&ck_ref);
877 	printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
878 		"%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
879 	       ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
880 	       ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
881 	       arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
882 
883 #if defined(CONFIG_MACH_OMAP_PERSEUS2) || defined(CONFIG_MACH_OMAP_FSAMPLE)
884 	/* Select slicer output as OMAP input clock */
885 	omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
886 #endif
887 
888 	/* Amstrad Delta wants BCLK high when inactive */
889 	if (machine_is_ams_delta())
890 		omap_writel(omap_readl(ULPD_CLOCK_CTRL) |
891 				(1 << SDW_MCLK_INV_BIT),
892 				ULPD_CLOCK_CTRL);
893 
894 	/* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
895 	/* (on 730, bit 13 must not be cleared) */
896 	if (cpu_is_omap730())
897 		omap_writew(omap_readw(ARM_CKCTL) & 0x2fff, ARM_CKCTL);
898 	else
899 		omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
900 
901 	/* Put DSP/MPUI into reset until needed */
902 	omap_writew(0, ARM_RSTCT1);
903 	omap_writew(1, ARM_RSTCT2);
904 	omap_writew(0x400, ARM_IDLECT1);
905 
906 	/*
907 	 * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
908 	 * of the ARM_IDLECT2 register must be set to zero. The power-on
909 	 * default value of this bit is one.
910 	 */
911 	omap_writew(0x0000, ARM_IDLECT2);	/* Turn LCD clock off also */
912 
913 	/*
914 	 * Only enable those clocks we will need, let the drivers
915 	 * enable other clocks as necessary
916 	 */
917 	clk_enable(&armper_ck.clk);
918 	clk_enable(&armxor_ck.clk);
919 	clk_enable(&armtim_ck.clk); /* This should be done by timer code */
920 
921 	if (cpu_is_omap15xx())
922 		clk_enable(&arm_gpio_ck);
923 
924 	return 0;
925 }
926