xref: /openbmc/linux/arch/arm/mach-mvebu/coherency.c (revision 9b358af7)
1 /*
2  * Coherency fabric (Aurora) support for Armada 370, 375, 38x and XP
3  * platforms.
4  *
5  * Copyright (C) 2012 Marvell
6  *
7  * Yehuda Yitschak <yehuday@marvell.com>
8  * Gregory Clement <gregory.clement@free-electrons.com>
9  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
10  *
11  * This file is licensed under the terms of the GNU General Public
12  * License version 2.  This program is licensed "as is" without any
13  * warranty of any kind, whether express or implied.
14  *
15  * The Armada 370, 375, 38x and XP SOCs have a coherency fabric which is
16  * responsible for ensuring hardware coherency between all CPUs and between
17  * CPUs and I/O masters. This file initializes the coherency fabric and
18  * supplies basic routines for configuring and controlling hardware coherency
19  */
20 
21 #define pr_fmt(fmt) "mvebu-coherency: " fmt
22 
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/of_address.h>
26 #include <linux/io.h>
27 #include <linux/smp.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/platform_device.h>
30 #include <linux/slab.h>
31 #include <linux/mbus.h>
32 #include <linux/pci.h>
33 #include <asm/smp_plat.h>
34 #include <asm/cacheflush.h>
35 #include <asm/mach/map.h>
36 #include <asm/dma-mapping.h>
37 #include "coherency.h"
38 #include "mvebu-soc-id.h"
39 
40 unsigned long coherency_phys_base;
41 void __iomem *coherency_base;
42 static void __iomem *coherency_cpu_base;
43 static void __iomem *cpu_config_base;
44 
45 /* Coherency fabric registers */
46 #define IO_SYNC_BARRIER_CTL_OFFSET		   0x0
47 
48 enum {
49 	COHERENCY_FABRIC_TYPE_NONE,
50 	COHERENCY_FABRIC_TYPE_ARMADA_370_XP,
51 	COHERENCY_FABRIC_TYPE_ARMADA_375,
52 	COHERENCY_FABRIC_TYPE_ARMADA_380,
53 };
54 
55 static const struct of_device_id of_coherency_table[] = {
56 	{.compatible = "marvell,coherency-fabric",
57 	 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP },
58 	{.compatible = "marvell,armada-375-coherency-fabric",
59 	 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_375 },
60 	{.compatible = "marvell,armada-380-coherency-fabric",
61 	 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_380 },
62 	{ /* end of list */ },
63 };
64 
65 /* Functions defined in coherency_ll.S */
66 int ll_enable_coherency(void);
67 void ll_add_cpu_to_smp_group(void);
68 
69 #define CPU_CONFIG_SHARED_L2 BIT(16)
70 
71 /*
72  * Disable the "Shared L2 Present" bit in CPU Configuration register
73  * on Armada XP.
74  *
75  * The "Shared L2 Present" bit affects the "level of coherence" value
76  * in the clidr CP15 register.  Cache operation functions such as
77  * "flush all" and "invalidate all" operate on all the cache levels
78  * that included in the defined level of coherence. When HW I/O
79  * coherency is used, this bit causes unnecessary flushes of the L2
80  * cache.
81  */
82 static void armada_xp_clear_shared_l2(void)
83 {
84 	u32 reg;
85 
86 	if (!cpu_config_base)
87 		return;
88 
89 	reg = readl(cpu_config_base);
90 	reg &= ~CPU_CONFIG_SHARED_L2;
91 	writel(reg, cpu_config_base);
92 }
93 
94 static int mvebu_hwcc_notifier(struct notifier_block *nb,
95 			       unsigned long event, void *__dev)
96 {
97 	struct device *dev = __dev;
98 
99 	if (event != BUS_NOTIFY_ADD_DEVICE)
100 		return NOTIFY_DONE;
101 	set_dma_ops(dev, &arm_coherent_dma_ops);
102 
103 	return NOTIFY_OK;
104 }
105 
106 static struct notifier_block mvebu_hwcc_nb = {
107 	.notifier_call = mvebu_hwcc_notifier,
108 };
109 
110 static struct notifier_block mvebu_hwcc_pci_nb __maybe_unused = {
111 	.notifier_call = mvebu_hwcc_notifier,
112 };
113 
114 static int armada_xp_clear_l2_starting(unsigned int cpu)
115 {
116 	armada_xp_clear_shared_l2();
117 	return 0;
118 }
119 
120 static void __init armada_370_coherency_init(struct device_node *np)
121 {
122 	struct resource res;
123 	struct device_node *cpu_config_np;
124 
125 	of_address_to_resource(np, 0, &res);
126 	coherency_phys_base = res.start;
127 	/*
128 	 * Ensure secondary CPUs will see the updated value,
129 	 * which they read before they join the coherency
130 	 * fabric, and therefore before they are coherent with
131 	 * the boot CPU cache.
132 	 */
133 	sync_cache_w(&coherency_phys_base);
134 	coherency_base = of_iomap(np, 0);
135 	coherency_cpu_base = of_iomap(np, 1);
136 
137 	cpu_config_np = of_find_compatible_node(NULL, NULL,
138 						"marvell,armada-xp-cpu-config");
139 	if (!cpu_config_np)
140 		goto exit;
141 
142 	cpu_config_base = of_iomap(cpu_config_np, 0);
143 	if (!cpu_config_base) {
144 		of_node_put(cpu_config_np);
145 		goto exit;
146 	}
147 
148 	of_node_put(cpu_config_np);
149 
150 	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_MVEBU_COHERENCY,
151 				  "arm/mvebu/coherency:starting",
152 				  armada_xp_clear_l2_starting, NULL);
153 exit:
154 	set_cpu_coherent();
155 }
156 
157 /*
158  * This ioremap hook is used on Armada 375/38x to ensure that all MMIO
159  * areas are mapped as MT_UNCACHED instead of MT_DEVICE. This is
160  * needed for the HW I/O coherency mechanism to work properly without
161  * deadlock.
162  */
163 static void __iomem *
164 armada_wa_ioremap_caller(phys_addr_t phys_addr, size_t size,
165 			 unsigned int mtype, void *caller)
166 {
167 	mtype = MT_UNCACHED;
168 	return __arm_ioremap_caller(phys_addr, size, mtype, caller);
169 }
170 
171 static void __init armada_375_380_coherency_init(struct device_node *np)
172 {
173 	struct device_node *cache_dn;
174 
175 	coherency_cpu_base = of_iomap(np, 0);
176 	arch_ioremap_caller = armada_wa_ioremap_caller;
177 	pci_ioremap_set_mem_type(MT_UNCACHED);
178 
179 	/*
180 	 * We should switch the PL310 to I/O coherency mode only if
181 	 * I/O coherency is actually enabled.
182 	 */
183 	if (!coherency_available())
184 		return;
185 
186 	/*
187 	 * Add the PL310 property "arm,io-coherent". This makes sure the
188 	 * outer sync operation is not used, which allows to
189 	 * workaround the system erratum that causes deadlocks when
190 	 * doing PCIe in an SMP situation on Armada 375 and Armada
191 	 * 38x.
192 	 */
193 	for_each_compatible_node(cache_dn, NULL, "arm,pl310-cache") {
194 		struct property *p;
195 
196 		p = kzalloc(sizeof(*p), GFP_KERNEL);
197 		p->name = kstrdup("arm,io-coherent", GFP_KERNEL);
198 		of_add_property(cache_dn, p);
199 	}
200 }
201 
202 static int coherency_type(void)
203 {
204 	struct device_node *np;
205 	const struct of_device_id *match;
206 	int type;
207 
208 	/*
209 	 * The coherency fabric is needed:
210 	 * - For coherency between processors on Armada XP, so only
211 	 *   when SMP is enabled.
212 	 * - For coherency between the processor and I/O devices, but
213 	 *   this coherency requires many pre-requisites (write
214 	 *   allocate cache policy, shareable pages, SMP bit set) that
215 	 *   are only meant in SMP situations.
216 	 *
217 	 * Note that this means that on Armada 370, there is currently
218 	 * no way to use hardware I/O coherency, because even when
219 	 * CONFIG_SMP is enabled, is_smp() returns false due to the
220 	 * Armada 370 being a single-core processor. To lift this
221 	 * limitation, we would have to find a way to make the cache
222 	 * policy set to write-allocate (on all Armada SoCs), and to
223 	 * set the shareable attribute in page tables (on all Armada
224 	 * SoCs except the Armada 370). Unfortunately, such decisions
225 	 * are taken very early in the kernel boot process, at a point
226 	 * where we don't know yet on which SoC we are running.
227 
228 	 */
229 	if (!is_smp())
230 		return COHERENCY_FABRIC_TYPE_NONE;
231 
232 	np = of_find_matching_node_and_match(NULL, of_coherency_table, &match);
233 	if (!np)
234 		return COHERENCY_FABRIC_TYPE_NONE;
235 
236 	type = (int) match->data;
237 
238 	of_node_put(np);
239 
240 	return type;
241 }
242 
243 int set_cpu_coherent(void)
244 {
245 	int type = coherency_type();
246 
247 	if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP) {
248 		if (!coherency_base) {
249 			pr_warn("Can't make current CPU cache coherent.\n");
250 			pr_warn("Coherency fabric is not initialized\n");
251 			return 1;
252 		}
253 
254 		armada_xp_clear_shared_l2();
255 		ll_add_cpu_to_smp_group();
256 		return ll_enable_coherency();
257 	}
258 
259 	return 0;
260 }
261 
262 int coherency_available(void)
263 {
264 	return coherency_type() != COHERENCY_FABRIC_TYPE_NONE;
265 }
266 
267 int __init coherency_init(void)
268 {
269 	int type = coherency_type();
270 	struct device_node *np;
271 
272 	np = of_find_matching_node(NULL, of_coherency_table);
273 
274 	if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
275 		armada_370_coherency_init(np);
276 	else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 ||
277 		 type == COHERENCY_FABRIC_TYPE_ARMADA_380)
278 		armada_375_380_coherency_init(np);
279 
280 	of_node_put(np);
281 
282 	return 0;
283 }
284 
285 static int __init coherency_late_init(void)
286 {
287 	if (coherency_available())
288 		bus_register_notifier(&platform_bus_type,
289 				      &mvebu_hwcc_nb);
290 	return 0;
291 }
292 
293 postcore_initcall(coherency_late_init);
294 
295 #if IS_ENABLED(CONFIG_PCI)
296 static int __init coherency_pci_init(void)
297 {
298 	if (coherency_available())
299 		bus_register_notifier(&pci_bus_type,
300 				       &mvebu_hwcc_pci_nb);
301 	return 0;
302 }
303 
304 arch_initcall(coherency_pci_init);
305 #endif
306