1 /* 2 * Coherency fabric (Aurora) support for Armada 370, 375, 38x and XP 3 * platforms. 4 * 5 * Copyright (C) 2012 Marvell 6 * 7 * Yehuda Yitschak <yehuday@marvell.com> 8 * Gregory Clement <gregory.clement@free-electrons.com> 9 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 10 * 11 * This file is licensed under the terms of the GNU General Public 12 * License version 2. This program is licensed "as is" without any 13 * warranty of any kind, whether express or implied. 14 * 15 * The Armada 370, 375, 38x and XP SOCs have a coherency fabric which is 16 * responsible for ensuring hardware coherency between all CPUs and between 17 * CPUs and I/O masters. This file initializes the coherency fabric and 18 * supplies basic routines for configuring and controlling hardware coherency 19 */ 20 21 #define pr_fmt(fmt) "mvebu-coherency: " fmt 22 23 #include <linux/kernel.h> 24 #include <linux/init.h> 25 #include <linux/of_address.h> 26 #include <linux/io.h> 27 #include <linux/smp.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/platform_device.h> 30 #include <linux/slab.h> 31 #include <linux/mbus.h> 32 #include <linux/pci.h> 33 #include <asm/smp_plat.h> 34 #include <asm/cacheflush.h> 35 #include <asm/mach/map.h> 36 #include <asm/dma-mapping.h> 37 #include "coherency.h" 38 #include "mvebu-soc-id.h" 39 40 unsigned long coherency_phys_base; 41 void __iomem *coherency_base; 42 static void __iomem *coherency_cpu_base; 43 static void __iomem *cpu_config_base; 44 45 /* Coherency fabric registers */ 46 #define IO_SYNC_BARRIER_CTL_OFFSET 0x0 47 48 enum { 49 COHERENCY_FABRIC_TYPE_NONE, 50 COHERENCY_FABRIC_TYPE_ARMADA_370_XP, 51 COHERENCY_FABRIC_TYPE_ARMADA_375, 52 COHERENCY_FABRIC_TYPE_ARMADA_380, 53 }; 54 55 static const struct of_device_id of_coherency_table[] = { 56 {.compatible = "marvell,coherency-fabric", 57 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP }, 58 {.compatible = "marvell,armada-375-coherency-fabric", 59 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_375 }, 60 {.compatible = "marvell,armada-380-coherency-fabric", 61 .data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_380 }, 62 { /* end of list */ }, 63 }; 64 65 /* Functions defined in coherency_ll.S */ 66 int ll_enable_coherency(void); 67 void ll_add_cpu_to_smp_group(void); 68 69 #define CPU_CONFIG_SHARED_L2 BIT(16) 70 71 /* 72 * Disable the "Shared L2 Present" bit in CPU Configuration register 73 * on Armada XP. 74 * 75 * The "Shared L2 Present" bit affects the "level of coherence" value 76 * in the clidr CP15 register. Cache operation functions such as 77 * "flush all" and "invalidate all" operate on all the cache levels 78 * that included in the defined level of coherence. When HW I/O 79 * coherency is used, this bit causes unnecessary flushes of the L2 80 * cache. 81 */ 82 static void armada_xp_clear_shared_l2(void) 83 { 84 u32 reg; 85 86 if (!cpu_config_base) 87 return; 88 89 reg = readl(cpu_config_base); 90 reg &= ~CPU_CONFIG_SHARED_L2; 91 writel(reg, cpu_config_base); 92 } 93 94 static int mvebu_hwcc_notifier(struct notifier_block *nb, 95 unsigned long event, void *__dev) 96 { 97 struct device *dev = __dev; 98 99 if (event != BUS_NOTIFY_ADD_DEVICE) 100 return NOTIFY_DONE; 101 set_dma_ops(dev, &arm_coherent_dma_ops); 102 103 return NOTIFY_OK; 104 } 105 106 static struct notifier_block mvebu_hwcc_nb = { 107 .notifier_call = mvebu_hwcc_notifier, 108 }; 109 110 static struct notifier_block mvebu_hwcc_pci_nb __maybe_unused = { 111 .notifier_call = mvebu_hwcc_notifier, 112 }; 113 114 static int armada_xp_clear_shared_l2_notifier_func(struct notifier_block *nfb, 115 unsigned long action, void *hcpu) 116 { 117 if (action == CPU_STARTING || action == CPU_STARTING_FROZEN) 118 armada_xp_clear_shared_l2(); 119 120 return NOTIFY_OK; 121 } 122 123 static struct notifier_block armada_xp_clear_shared_l2_notifier = { 124 .notifier_call = armada_xp_clear_shared_l2_notifier_func, 125 .priority = 100, 126 }; 127 128 static void __init armada_370_coherency_init(struct device_node *np) 129 { 130 struct resource res; 131 struct device_node *cpu_config_np; 132 133 of_address_to_resource(np, 0, &res); 134 coherency_phys_base = res.start; 135 /* 136 * Ensure secondary CPUs will see the updated value, 137 * which they read before they join the coherency 138 * fabric, and therefore before they are coherent with 139 * the boot CPU cache. 140 */ 141 sync_cache_w(&coherency_phys_base); 142 coherency_base = of_iomap(np, 0); 143 coherency_cpu_base = of_iomap(np, 1); 144 145 cpu_config_np = of_find_compatible_node(NULL, NULL, 146 "marvell,armada-xp-cpu-config"); 147 if (!cpu_config_np) 148 goto exit; 149 150 cpu_config_base = of_iomap(cpu_config_np, 0); 151 if (!cpu_config_base) { 152 of_node_put(cpu_config_np); 153 goto exit; 154 } 155 156 of_node_put(cpu_config_np); 157 158 register_cpu_notifier(&armada_xp_clear_shared_l2_notifier); 159 160 exit: 161 set_cpu_coherent(); 162 } 163 164 /* 165 * This ioremap hook is used on Armada 375/38x to ensure that all MMIO 166 * areas are mapped as MT_UNCACHED instead of MT_DEVICE. This is 167 * needed for the HW I/O coherency mechanism to work properly without 168 * deadlock. 169 */ 170 static void __iomem * 171 armada_wa_ioremap_caller(phys_addr_t phys_addr, size_t size, 172 unsigned int mtype, void *caller) 173 { 174 mtype = MT_UNCACHED; 175 return __arm_ioremap_caller(phys_addr, size, mtype, caller); 176 } 177 178 static void __init armada_375_380_coherency_init(struct device_node *np) 179 { 180 struct device_node *cache_dn; 181 182 coherency_cpu_base = of_iomap(np, 0); 183 arch_ioremap_caller = armada_wa_ioremap_caller; 184 pci_ioremap_set_mem_type(MT_UNCACHED); 185 186 /* 187 * We should switch the PL310 to I/O coherency mode only if 188 * I/O coherency is actually enabled. 189 */ 190 if (!coherency_available()) 191 return; 192 193 /* 194 * Add the PL310 property "arm,io-coherent". This makes sure the 195 * outer sync operation is not used, which allows to 196 * workaround the system erratum that causes deadlocks when 197 * doing PCIe in an SMP situation on Armada 375 and Armada 198 * 38x. 199 */ 200 for_each_compatible_node(cache_dn, NULL, "arm,pl310-cache") { 201 struct property *p; 202 203 p = kzalloc(sizeof(*p), GFP_KERNEL); 204 p->name = kstrdup("arm,io-coherent", GFP_KERNEL); 205 of_add_property(cache_dn, p); 206 } 207 } 208 209 static int coherency_type(void) 210 { 211 struct device_node *np; 212 const struct of_device_id *match; 213 int type; 214 215 /* 216 * The coherency fabric is needed: 217 * - For coherency between processors on Armada XP, so only 218 * when SMP is enabled. 219 * - For coherency between the processor and I/O devices, but 220 * this coherency requires many pre-requisites (write 221 * allocate cache policy, shareable pages, SMP bit set) that 222 * are only meant in SMP situations. 223 * 224 * Note that this means that on Armada 370, there is currently 225 * no way to use hardware I/O coherency, because even when 226 * CONFIG_SMP is enabled, is_smp() returns false due to the 227 * Armada 370 being a single-core processor. To lift this 228 * limitation, we would have to find a way to make the cache 229 * policy set to write-allocate (on all Armada SoCs), and to 230 * set the shareable attribute in page tables (on all Armada 231 * SoCs except the Armada 370). Unfortunately, such decisions 232 * are taken very early in the kernel boot process, at a point 233 * where we don't know yet on which SoC we are running. 234 235 */ 236 if (!is_smp()) 237 return COHERENCY_FABRIC_TYPE_NONE; 238 239 np = of_find_matching_node_and_match(NULL, of_coherency_table, &match); 240 if (!np) 241 return COHERENCY_FABRIC_TYPE_NONE; 242 243 type = (int) match->data; 244 245 of_node_put(np); 246 247 return type; 248 } 249 250 int set_cpu_coherent(void) 251 { 252 int type = coherency_type(); 253 254 if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP) { 255 if (!coherency_base) { 256 pr_warn("Can't make current CPU cache coherent.\n"); 257 pr_warn("Coherency fabric is not initialized\n"); 258 return 1; 259 } 260 261 armada_xp_clear_shared_l2(); 262 ll_add_cpu_to_smp_group(); 263 return ll_enable_coherency(); 264 } 265 266 return 0; 267 } 268 269 int coherency_available(void) 270 { 271 return coherency_type() != COHERENCY_FABRIC_TYPE_NONE; 272 } 273 274 int __init coherency_init(void) 275 { 276 int type = coherency_type(); 277 struct device_node *np; 278 279 np = of_find_matching_node(NULL, of_coherency_table); 280 281 if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP) 282 armada_370_coherency_init(np); 283 else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 || 284 type == COHERENCY_FABRIC_TYPE_ARMADA_380) 285 armada_375_380_coherency_init(np); 286 287 of_node_put(np); 288 289 return 0; 290 } 291 292 static int __init coherency_late_init(void) 293 { 294 if (coherency_available()) 295 bus_register_notifier(&platform_bus_type, 296 &mvebu_hwcc_nb); 297 return 0; 298 } 299 300 postcore_initcall(coherency_late_init); 301 302 #if IS_ENABLED(CONFIG_PCI) 303 static int __init coherency_pci_init(void) 304 { 305 if (coherency_available()) 306 bus_register_notifier(&pci_bus_type, 307 &mvebu_hwcc_pci_nb); 308 return 0; 309 } 310 311 arch_initcall(coherency_pci_init); 312 #endif 313