xref: /openbmc/linux/arch/arm/mach-exynos/platsmp.c (revision 84d517f3)
1 /* linux/arch/arm/mach-exynos4/platsmp.c
2  *
3  * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Cloned from linux/arch/arm/mach-vexpress/platsmp.c
7  *
8  *  Copyright (C) 2002 ARM Ltd.
9  *  All Rights Reserved
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14 */
15 
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/delay.h>
19 #include <linux/device.h>
20 #include <linux/jiffies.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/of_address.h>
24 
25 #include <asm/cacheflush.h>
26 #include <asm/smp_plat.h>
27 #include <asm/smp_scu.h>
28 #include <asm/firmware.h>
29 
30 #include "common.h"
31 #include "regs-pmu.h"
32 
33 extern void exynos4_secondary_startup(void);
34 
35 void __iomem *sysram_base_addr;
36 void __iomem *sysram_ns_base_addr;
37 
38 static void __init exynos_smp_prepare_sysram(void)
39 {
40 	struct device_node *node;
41 
42 	for_each_compatible_node(node, NULL, "samsung,exynos4210-sysram") {
43 		if (!of_device_is_available(node))
44 			continue;
45 		sysram_base_addr = of_iomap(node, 0);
46 		break;
47 	}
48 
49 	for_each_compatible_node(node, NULL, "samsung,exynos4210-sysram-ns") {
50 		if (!of_device_is_available(node))
51 			continue;
52 		sysram_ns_base_addr = of_iomap(node, 0);
53 		break;
54 	}
55 }
56 
57 static inline void __iomem *cpu_boot_reg_base(void)
58 {
59 	if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1)
60 		return S5P_INFORM5;
61 	return sysram_base_addr;
62 }
63 
64 static inline void __iomem *cpu_boot_reg(int cpu)
65 {
66 	void __iomem *boot_reg;
67 
68 	boot_reg = cpu_boot_reg_base();
69 	if (!boot_reg)
70 		return ERR_PTR(-ENODEV);
71 	if (soc_is_exynos4412())
72 		boot_reg += 4*cpu;
73 	else if (soc_is_exynos5420() || soc_is_exynos5800())
74 		boot_reg += 4;
75 	return boot_reg;
76 }
77 
78 /*
79  * Write pen_release in a way that is guaranteed to be visible to all
80  * observers, irrespective of whether they're taking part in coherency
81  * or not.  This is necessary for the hotplug code to work reliably.
82  */
83 static void write_pen_release(int val)
84 {
85 	pen_release = val;
86 	smp_wmb();
87 	sync_cache_w(&pen_release);
88 }
89 
90 static void __iomem *scu_base_addr(void)
91 {
92 	return (void __iomem *)(S5P_VA_SCU);
93 }
94 
95 static DEFINE_SPINLOCK(boot_lock);
96 
97 static void exynos_secondary_init(unsigned int cpu)
98 {
99 	/*
100 	 * let the primary processor know we're out of the
101 	 * pen, then head off into the C entry point
102 	 */
103 	write_pen_release(-1);
104 
105 	/*
106 	 * Synchronise with the boot thread.
107 	 */
108 	spin_lock(&boot_lock);
109 	spin_unlock(&boot_lock);
110 }
111 
112 static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle)
113 {
114 	unsigned long timeout;
115 	unsigned long phys_cpu = cpu_logical_map(cpu);
116 	int ret = -ENOSYS;
117 
118 	/*
119 	 * Set synchronisation state between this boot processor
120 	 * and the secondary one
121 	 */
122 	spin_lock(&boot_lock);
123 
124 	/*
125 	 * The secondary processor is waiting to be released from
126 	 * the holding pen - release it, then wait for it to flag
127 	 * that it has been released by resetting pen_release.
128 	 *
129 	 * Note that "pen_release" is the hardware CPU ID, whereas
130 	 * "cpu" is Linux's internal ID.
131 	 */
132 	write_pen_release(phys_cpu);
133 
134 	if (!exynos_cpu_power_state(cpu)) {
135 		exynos_cpu_power_up(cpu);
136 		timeout = 10;
137 
138 		/* wait max 10 ms until cpu1 is on */
139 		while (exynos_cpu_power_state(cpu) != S5P_CORE_LOCAL_PWR_EN) {
140 			if (timeout-- == 0)
141 				break;
142 
143 			mdelay(1);
144 		}
145 
146 		if (timeout == 0) {
147 			printk(KERN_ERR "cpu1 power enable failed");
148 			spin_unlock(&boot_lock);
149 			return -ETIMEDOUT;
150 		}
151 	}
152 	/*
153 	 * Send the secondary CPU a soft interrupt, thereby causing
154 	 * the boot monitor to read the system wide flags register,
155 	 * and branch to the address found there.
156 	 */
157 
158 	timeout = jiffies + (1 * HZ);
159 	while (time_before(jiffies, timeout)) {
160 		unsigned long boot_addr;
161 
162 		smp_rmb();
163 
164 		boot_addr = virt_to_phys(exynos4_secondary_startup);
165 
166 		/*
167 		 * Try to set boot address using firmware first
168 		 * and fall back to boot register if it fails.
169 		 */
170 		ret = call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr);
171 		if (ret && ret != -ENOSYS)
172 			goto fail;
173 		if (ret == -ENOSYS) {
174 			void __iomem *boot_reg = cpu_boot_reg(phys_cpu);
175 
176 			if (IS_ERR(boot_reg)) {
177 				ret = PTR_ERR(boot_reg);
178 				goto fail;
179 			}
180 			__raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
181 		}
182 
183 		call_firmware_op(cpu_boot, phys_cpu);
184 
185 		arch_send_wakeup_ipi_mask(cpumask_of(cpu));
186 
187 		if (pen_release == -1)
188 			break;
189 
190 		udelay(10);
191 	}
192 
193 	/*
194 	 * now the secondary core is starting up let it run its
195 	 * calibrations, then wait for it to finish
196 	 */
197 fail:
198 	spin_unlock(&boot_lock);
199 
200 	return pen_release != -1 ? ret : 0;
201 }
202 
203 /*
204  * Initialise the CPU possible map early - this describes the CPUs
205  * which may be present or become present in the system.
206  */
207 
208 static void __init exynos_smp_init_cpus(void)
209 {
210 	void __iomem *scu_base = scu_base_addr();
211 	unsigned int i, ncores;
212 
213 	if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9)
214 		ncores = scu_base ? scu_get_core_count(scu_base) : 1;
215 	else
216 		/*
217 		 * CPU Nodes are passed thru DT and set_cpu_possible
218 		 * is set by "arm_dt_init_cpu_maps".
219 		 */
220 		return;
221 
222 	/* sanity check */
223 	if (ncores > nr_cpu_ids) {
224 		pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
225 			ncores, nr_cpu_ids);
226 		ncores = nr_cpu_ids;
227 	}
228 
229 	for (i = 0; i < ncores; i++)
230 		set_cpu_possible(i, true);
231 }
232 
233 static void __init exynos_smp_prepare_cpus(unsigned int max_cpus)
234 {
235 	int i;
236 
237 	if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9)
238 		scu_enable(scu_base_addr());
239 
240 	exynos_smp_prepare_sysram();
241 
242 	/*
243 	 * Write the address of secondary startup into the
244 	 * system-wide flags register. The boot monitor waits
245 	 * until it receives a soft interrupt, and then the
246 	 * secondary CPU branches to this address.
247 	 *
248 	 * Try using firmware operation first and fall back to
249 	 * boot register if it fails.
250 	 */
251 	for (i = 1; i < max_cpus; ++i) {
252 		unsigned long phys_cpu;
253 		unsigned long boot_addr;
254 		int ret;
255 
256 		phys_cpu = cpu_logical_map(i);
257 		boot_addr = virt_to_phys(exynos4_secondary_startup);
258 
259 		ret = call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr);
260 		if (ret && ret != -ENOSYS)
261 			break;
262 		if (ret == -ENOSYS) {
263 			void __iomem *boot_reg = cpu_boot_reg(phys_cpu);
264 
265 			if (IS_ERR(boot_reg))
266 				break;
267 			__raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
268 		}
269 	}
270 }
271 
272 struct smp_operations exynos_smp_ops __initdata = {
273 	.smp_init_cpus		= exynos_smp_init_cpus,
274 	.smp_prepare_cpus	= exynos_smp_prepare_cpus,
275 	.smp_secondary_init	= exynos_secondary_init,
276 	.smp_boot_secondary	= exynos_boot_secondary,
277 #ifdef CONFIG_HOTPLUG_CPU
278 	.cpu_die		= exynos_cpu_die,
279 #endif
280 };
281