xref: /openbmc/linux/arch/arm/mach-exynos/mcpm-exynos.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (c) 2014 Samsung Electronics Co., Ltd.
3 //		http://www.samsung.com
4 //
5 // Based on arch/arm/mach-vexpress/dcscb.c
6 
7 #include <linux/arm-cci.h>
8 #include <linux/delay.h>
9 #include <linux/io.h>
10 #include <linux/of_address.h>
11 #include <linux/syscore_ops.h>
12 #include <linux/soc/samsung/exynos-regs-pmu.h>
13 
14 #include <asm/cputype.h>
15 #include <asm/cp15.h>
16 #include <asm/mcpm.h>
17 #include <asm/smp_plat.h>
18 
19 #include "common.h"
20 
21 #define EXYNOS5420_CPUS_PER_CLUSTER	4
22 #define EXYNOS5420_NR_CLUSTERS		2
23 
24 #define EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN	BIT(9)
25 #define EXYNOS5420_USE_ARM_CORE_DOWN_STATE	BIT(29)
26 #define EXYNOS5420_USE_L2_COMMON_UP_STATE	BIT(30)
27 
28 static void __iomem *ns_sram_base_addr __ro_after_init;
29 static bool secure_firmware __ro_after_init;
30 
31 /*
32  * The common v7_exit_coherency_flush API could not be used because of the
33  * Erratum 799270 workaround. This macro is the same as the common one (in
34  * arch/arm/include/asm/cacheflush.h) except for the erratum handling.
35  */
36 #define exynos_v7_exit_coherency_flush(level) \
37 	asm volatile( \
38 	"stmfd	sp!, {fp, ip}\n\t"\
39 	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR\n\t" \
40 	"bic	r0, r0, #"__stringify(CR_C)"\n\t" \
41 	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR\n\t" \
42 	"isb\n\t"\
43 	"bl	v7_flush_dcache_"__stringify(level)"\n\t" \
44 	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR\n\t" \
45 	"bic	r0, r0, #(1 << 6)	@ disable local coherency\n\t" \
46 	/* Dummy Load of a device register to avoid Erratum 799270 */ \
47 	"ldr	r4, [%0]\n\t" \
48 	"and	r4, r4, #0\n\t" \
49 	"orr	r0, r0, r4\n\t" \
50 	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR\n\t" \
51 	"isb\n\t" \
52 	"dsb\n\t" \
53 	"ldmfd	sp!, {fp, ip}" \
54 	: \
55 	: "Ir" (pmu_base_addr + S5P_INFORM0) \
56 	: "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
57 	  "r9", "r10", "lr", "memory")
58 
59 static int exynos_cpu_powerup(unsigned int cpu, unsigned int cluster)
60 {
61 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
62 	bool state;
63 
64 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
65 	if (cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
66 		cluster >= EXYNOS5420_NR_CLUSTERS)
67 		return -EINVAL;
68 
69 	state = exynos_cpu_power_state(cpunr);
70 	exynos_cpu_power_up(cpunr);
71 	if (!state && secure_firmware) {
72 		/*
73 		 * This assumes the cluster number of the big cores(Cortex A15)
74 		 * is 0 and the Little cores(Cortex A7) is 1.
75 		 * When the system was booted from the Little core,
76 		 * they should be reset during power up cpu.
77 		 */
78 		if (cluster &&
79 		    cluster == MPIDR_AFFINITY_LEVEL(cpu_logical_map(0), 1)) {
80 			unsigned int timeout = 16;
81 
82 			/*
83 			 * Before we reset the Little cores, we should wait
84 			 * the SPARE2 register is set to 1 because the init
85 			 * codes of the iROM will set the register after
86 			 * initialization.
87 			 */
88 			while (timeout && !pmu_raw_readl(S5P_PMU_SPARE2)) {
89 				timeout--;
90 				udelay(10);
91 			}
92 
93 			if (timeout == 0) {
94 				pr_err("cpu %u cluster %u powerup failed\n",
95 				       cpu, cluster);
96 				exynos_cpu_power_down(cpunr);
97 				return -ETIMEDOUT;
98 			}
99 
100 			pmu_raw_writel(EXYNOS5420_KFC_CORE_RESET(cpu),
101 					EXYNOS_SWRESET);
102 		}
103 	}
104 
105 	return 0;
106 }
107 
108 static int exynos_cluster_powerup(unsigned int cluster)
109 {
110 	pr_debug("%s: cluster %u\n", __func__, cluster);
111 	if (cluster >= EXYNOS5420_NR_CLUSTERS)
112 		return -EINVAL;
113 
114 	exynos_cluster_power_up(cluster);
115 	return 0;
116 }
117 
118 static void exynos_cpu_powerdown_prepare(unsigned int cpu, unsigned int cluster)
119 {
120 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
121 
122 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
123 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
124 			cluster >= EXYNOS5420_NR_CLUSTERS);
125 	exynos_cpu_power_down(cpunr);
126 }
127 
128 static void exynos_cluster_powerdown_prepare(unsigned int cluster)
129 {
130 	pr_debug("%s: cluster %u\n", __func__, cluster);
131 	BUG_ON(cluster >= EXYNOS5420_NR_CLUSTERS);
132 	exynos_cluster_power_down(cluster);
133 }
134 
135 static void exynos_cpu_cache_disable(void)
136 {
137 	/* Disable and flush the local CPU cache. */
138 	exynos_v7_exit_coherency_flush(louis);
139 }
140 
141 static void exynos_cluster_cache_disable(void)
142 {
143 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
144 		/*
145 		 * On the Cortex-A15 we need to disable
146 		 * L2 prefetching before flushing the cache.
147 		 */
148 		asm volatile(
149 		"mcr	p15, 1, %0, c15, c0, 3\n\t"
150 		"isb\n\t"
151 		"dsb"
152 		: : "r" (0x400));
153 	}
154 
155 	/* Flush all cache levels for this cluster. */
156 	exynos_v7_exit_coherency_flush(all);
157 
158 	/*
159 	 * Disable cluster-level coherency by masking
160 	 * incoming snoops and DVM messages:
161 	 */
162 	cci_disable_port_by_cpu(read_cpuid_mpidr());
163 }
164 
165 static int exynos_wait_for_powerdown(unsigned int cpu, unsigned int cluster)
166 {
167 	unsigned int tries = 100;
168 	unsigned int cpunr = cpu + (cluster * EXYNOS5420_CPUS_PER_CLUSTER);
169 
170 	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
171 	BUG_ON(cpu >= EXYNOS5420_CPUS_PER_CLUSTER ||
172 			cluster >= EXYNOS5420_NR_CLUSTERS);
173 
174 	/* Wait for the core state to be OFF */
175 	while (tries--) {
176 		if ((exynos_cpu_power_state(cpunr) == 0))
177 			return 0; /* success: the CPU is halted */
178 
179 		/* Otherwise, wait and retry: */
180 		msleep(1);
181 	}
182 
183 	return -ETIMEDOUT; /* timeout */
184 }
185 
186 static void exynos_cpu_is_up(unsigned int cpu, unsigned int cluster)
187 {
188 	/* especially when resuming: make sure power control is set */
189 	exynos_cpu_powerup(cpu, cluster);
190 }
191 
192 static const struct mcpm_platform_ops exynos_power_ops = {
193 	.cpu_powerup		= exynos_cpu_powerup,
194 	.cluster_powerup	= exynos_cluster_powerup,
195 	.cpu_powerdown_prepare	= exynos_cpu_powerdown_prepare,
196 	.cluster_powerdown_prepare = exynos_cluster_powerdown_prepare,
197 	.cpu_cache_disable	= exynos_cpu_cache_disable,
198 	.cluster_cache_disable	= exynos_cluster_cache_disable,
199 	.wait_for_powerdown	= exynos_wait_for_powerdown,
200 	.cpu_is_up		= exynos_cpu_is_up,
201 };
202 
203 /*
204  * Enable cluster-level coherency, in preparation for turning on the MMU.
205  */
206 static void __naked exynos_pm_power_up_setup(unsigned int affinity_level)
207 {
208 	asm volatile ("\n"
209 	"cmp	r0, #1\n"
210 	"bxne	lr\n"
211 	"b	cci_enable_port_for_self");
212 }
213 
214 static const struct of_device_id exynos_dt_mcpm_match[] = {
215 	{ .compatible = "samsung,exynos5420" },
216 	{ .compatible = "samsung,exynos5800" },
217 	{},
218 };
219 
220 static void exynos_mcpm_setup_entry_point(void)
221 {
222 	/*
223 	 * U-Boot SPL is hardcoded to jump to the start of ns_sram_base_addr
224 	 * as part of secondary_cpu_start().  Let's redirect it to the
225 	 * mcpm_entry_point(). This is done during both secondary boot-up as
226 	 * well as system resume.
227 	 */
228 	__raw_writel(0xe59f0000, ns_sram_base_addr);     /* ldr r0, [pc, #0] */
229 	__raw_writel(0xe12fff10, ns_sram_base_addr + 4); /* bx  r0 */
230 	__raw_writel(__pa_symbol(mcpm_entry_point), ns_sram_base_addr + 8);
231 }
232 
233 static struct syscore_ops exynos_mcpm_syscore_ops = {
234 	.resume	= exynos_mcpm_setup_entry_point,
235 };
236 
237 static int __init exynos_mcpm_init(void)
238 {
239 	struct device_node *node;
240 	unsigned int value, i;
241 	int ret;
242 
243 	node = of_find_matching_node(NULL, exynos_dt_mcpm_match);
244 	if (!node)
245 		return -ENODEV;
246 	of_node_put(node);
247 
248 	if (!cci_probed())
249 		return -ENODEV;
250 
251 	node = of_find_compatible_node(NULL, NULL,
252 			"samsung,exynos4210-sysram-ns");
253 	if (!node)
254 		return -ENODEV;
255 
256 	ns_sram_base_addr = of_iomap(node, 0);
257 	of_node_put(node);
258 	if (!ns_sram_base_addr) {
259 		pr_err("failed to map non-secure iRAM base address\n");
260 		return -ENOMEM;
261 	}
262 
263 	secure_firmware = exynos_secure_firmware_available();
264 
265 	/*
266 	 * To increase the stability of KFC reset we need to program
267 	 * the PMU SPARE3 register
268 	 */
269 	pmu_raw_writel(EXYNOS5420_SWRESET_KFC_SEL, S5P_PMU_SPARE3);
270 
271 	ret = mcpm_platform_register(&exynos_power_ops);
272 	if (!ret)
273 		ret = mcpm_sync_init(exynos_pm_power_up_setup);
274 	if (!ret)
275 		ret = mcpm_loopback(exynos_cluster_cache_disable); /* turn on the CCI */
276 	if (ret) {
277 		iounmap(ns_sram_base_addr);
278 		return ret;
279 	}
280 
281 	mcpm_smp_set_ops();
282 
283 	pr_info("Exynos MCPM support installed\n");
284 
285 	/*
286 	 * On Exynos5420/5800 for the A15 and A7 clusters:
287 	 *
288 	 * EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN ensures that all the cores
289 	 * in a cluster are turned off before turning off the cluster L2.
290 	 *
291 	 * EXYNOS5420_USE_ARM_CORE_DOWN_STATE ensures that a cores is powered
292 	 * off before waking it up.
293 	 *
294 	 * EXYNOS5420_USE_L2_COMMON_UP_STATE ensures that cluster L2 will be
295 	 * turned on before the first man is powered up.
296 	 */
297 	for (i = 0; i < EXYNOS5420_NR_CLUSTERS; i++) {
298 		value = pmu_raw_readl(EXYNOS_COMMON_OPTION(i));
299 		value |= EXYNOS5420_ENABLE_AUTOMATIC_CORE_DOWN |
300 			 EXYNOS5420_USE_ARM_CORE_DOWN_STATE    |
301 			 EXYNOS5420_USE_L2_COMMON_UP_STATE;
302 		pmu_raw_writel(value, EXYNOS_COMMON_OPTION(i));
303 	}
304 
305 	exynos_mcpm_setup_entry_point();
306 
307 	register_syscore_ops(&exynos_mcpm_syscore_ops);
308 
309 	return ret;
310 }
311 
312 early_initcall(exynos_mcpm_init);
313