1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2014-2015 Broadcom Corporation 4 * Copyright 2014 Linaro Limited 5 */ 6 7 #include <linux/cpumask.h> 8 #include <linux/delay.h> 9 #include <linux/errno.h> 10 #include <linux/init.h> 11 #include <linux/io.h> 12 #include <linux/irqchip/irq-bcm2836.h> 13 #include <linux/jiffies.h> 14 #include <linux/of.h> 15 #include <linux/of_address.h> 16 #include <linux/sched.h> 17 #include <linux/sched/clock.h> 18 #include <linux/smp.h> 19 20 #include <asm/cacheflush.h> 21 #include <asm/smp.h> 22 #include <asm/smp_plat.h> 23 #include <asm/smp_scu.h> 24 25 #include "platsmp.h" 26 27 /* Size of mapped Cortex A9 SCU address space */ 28 #define CORTEX_A9_SCU_SIZE 0x58 29 30 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ 31 #define BOOT_ADDR_CPUID_MASK 0x3 32 33 /* Name of device node property defining secondary boot register location */ 34 #define OF_SECONDARY_BOOT "secondary-boot-reg" 35 #define MPIDR_CPUID_BITMASK 0x3 36 37 /* 38 * Enable the Cortex A9 Snoop Control Unit 39 * 40 * By the time this is called we already know there are multiple 41 * cores present. We assume we're running on a Cortex A9 processor, 42 * so any trouble getting the base address register or getting the 43 * SCU base is a problem. 44 * 45 * Return 0 if successful or an error code otherwise. 46 */ 47 static int __init scu_a9_enable(void) 48 { 49 unsigned long config_base; 50 void __iomem *scu_base; 51 52 if (!scu_a9_has_base()) { 53 pr_err("no configuration base address register!\n"); 54 return -ENXIO; 55 } 56 57 /* Config base address register value is zero for uniprocessor */ 58 config_base = scu_a9_get_base(); 59 if (!config_base) { 60 pr_err("hardware reports only one core\n"); 61 return -ENOENT; 62 } 63 64 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); 65 if (!scu_base) { 66 pr_err("failed to remap config base (%lu/%u) for SCU\n", 67 config_base, CORTEX_A9_SCU_SIZE); 68 return -ENOMEM; 69 } 70 71 scu_enable(scu_base); 72 73 iounmap(scu_base); /* That's the last we'll need of this */ 74 75 return 0; 76 } 77 78 static u32 secondary_boot_addr_for(unsigned int cpu) 79 { 80 u32 secondary_boot_addr = 0; 81 struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); 82 83 if (!cpu_node) { 84 pr_err("Failed to find device tree node for CPU%u\n", cpu); 85 return 0; 86 } 87 88 if (of_property_read_u32(cpu_node, 89 OF_SECONDARY_BOOT, 90 &secondary_boot_addr)) 91 pr_err("required secondary boot register not specified for CPU%u\n", 92 cpu); 93 94 of_node_put(cpu_node); 95 96 return secondary_boot_addr; 97 } 98 99 static int nsp_write_lut(unsigned int cpu) 100 { 101 void __iomem *sku_rom_lut; 102 phys_addr_t secondary_startup_phy; 103 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); 104 105 if (!secondary_boot_addr) 106 return -EINVAL; 107 108 sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr, 109 sizeof(phys_addr_t)); 110 if (!sku_rom_lut) { 111 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu); 112 return -ENOMEM; 113 } 114 115 secondary_startup_phy = __pa_symbol(secondary_startup); 116 BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX); 117 118 writel_relaxed(secondary_startup_phy, sku_rom_lut); 119 120 /* Ensure the write is visible to the secondary core */ 121 smp_wmb(); 122 123 iounmap(sku_rom_lut); 124 125 return 0; 126 } 127 128 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) 129 { 130 const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; 131 132 /* Enable the SCU on Cortex A9 based SoCs */ 133 if (scu_a9_enable()) { 134 /* Update the CPU present map to reflect uniprocessor mode */ 135 pr_warn("failed to enable A9 SCU - disabling SMP\n"); 136 init_cpu_present(&only_cpu_0); 137 } 138 } 139 140 /* 141 * The ROM code has the secondary cores looping, waiting for an event. 142 * When an event occurs each core examines the bottom two bits of the 143 * secondary boot register. When a core finds those bits contain its 144 * own core id, it performs initialization, including computing its boot 145 * address by clearing the boot register value's bottom two bits. The 146 * core signals that it is beginning its execution by writing its boot 147 * address back to the secondary boot register, and finally jumps to 148 * that address. 149 * 150 * So to start a core executing we need to: 151 * - Encode the (hardware) CPU id with the bottom bits of the secondary 152 * start address. 153 * - Write that value into the secondary boot register. 154 * - Generate an event to wake up the secondary CPU(s). 155 * - Wait for the secondary boot register to be re-written, which 156 * indicates the secondary core has started. 157 */ 158 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) 159 { 160 void __iomem *boot_reg; 161 phys_addr_t boot_func; 162 u64 start_clock; 163 u32 cpu_id; 164 u32 boot_val; 165 bool timeout = false; 166 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); 167 168 cpu_id = cpu_logical_map(cpu); 169 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { 170 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); 171 return -EINVAL; 172 } 173 174 if (!secondary_boot_addr) 175 return -EINVAL; 176 177 boot_reg = ioremap((phys_addr_t)secondary_boot_addr, 178 sizeof(phys_addr_t)); 179 if (!boot_reg) { 180 pr_err("unable to map boot register for cpu %u\n", cpu_id); 181 return -ENOMEM; 182 } 183 184 /* 185 * Secondary cores will start in secondary_startup(), 186 * defined in "arch/arm/kernel/head.S" 187 */ 188 boot_func = __pa_symbol(secondary_startup); 189 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); 190 BUG_ON(boot_func > (phys_addr_t)U32_MAX); 191 192 /* The core to start is encoded in the low bits */ 193 boot_val = (u32)boot_func | cpu_id; 194 writel_relaxed(boot_val, boot_reg); 195 196 sev(); 197 198 /* The low bits will be cleared once the core has started */ 199 start_clock = local_clock(); 200 while (!timeout && readl_relaxed(boot_reg) == boot_val) 201 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; 202 203 iounmap(boot_reg); 204 205 if (!timeout) 206 return 0; 207 208 pr_err("timeout waiting for cpu %u to start\n", cpu_id); 209 210 return -ENXIO; 211 } 212 213 /* Cluster Dormant Control command to bring CPU into a running state */ 214 #define CDC_CMD 6 215 #define CDC_CMD_OFFSET 0 216 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu)) 217 218 /* 219 * BCM23550 has a Cluster Dormant Control block that keeps the core in 220 * idle state. A command needs to be sent to the block to bring the CPU 221 * into running state. 222 */ 223 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle) 224 { 225 void __iomem *cdc_base; 226 struct device_node *dn; 227 char *name; 228 int ret; 229 230 /* Make sure a CDC node exists before booting the 231 * secondary core. 232 */ 233 name = "brcm,bcm23550-cdc"; 234 dn = of_find_compatible_node(NULL, NULL, name); 235 if (!dn) { 236 pr_err("unable to find cdc node\n"); 237 return -ENODEV; 238 } 239 240 cdc_base = of_iomap(dn, 0); 241 of_node_put(dn); 242 243 if (!cdc_base) { 244 pr_err("unable to remap cdc base register\n"); 245 return -ENOMEM; 246 } 247 248 /* Boot the secondary core */ 249 ret = kona_boot_secondary(cpu, idle); 250 if (ret) 251 goto out; 252 253 /* Bring this CPU to RUN state so that nIRQ nFIQ 254 * signals are unblocked. 255 */ 256 writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu)); 257 258 out: 259 iounmap(cdc_base); 260 261 return ret; 262 } 263 264 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle) 265 { 266 int ret; 267 268 /* 269 * After wake up, secondary core branches to the startup 270 * address programmed at SKU ROM LUT location. 271 */ 272 ret = nsp_write_lut(cpu); 273 if (ret) { 274 pr_err("unable to write startup addr to SKU ROM LUT\n"); 275 goto out; 276 } 277 278 /* Send a CPU wakeup interrupt to the secondary core */ 279 arch_send_wakeup_ipi_mask(cpumask_of(cpu)); 280 281 out: 282 return ret; 283 } 284 285 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle) 286 { 287 void __iomem *intc_base; 288 struct device_node *dn; 289 char *name; 290 291 name = "brcm,bcm2836-l1-intc"; 292 dn = of_find_compatible_node(NULL, NULL, name); 293 if (!dn) { 294 pr_err("unable to find intc node\n"); 295 return -ENODEV; 296 } 297 298 intc_base = of_iomap(dn, 0); 299 of_node_put(dn); 300 301 if (!intc_base) { 302 pr_err("unable to remap intc base register\n"); 303 return -ENOMEM; 304 } 305 306 writel(virt_to_phys(secondary_startup), 307 intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu); 308 309 dsb(sy); 310 sev(); 311 312 iounmap(intc_base); 313 314 return 0; 315 } 316 317 static const struct smp_operations kona_smp_ops __initconst = { 318 .smp_prepare_cpus = bcm_smp_prepare_cpus, 319 .smp_boot_secondary = kona_boot_secondary, 320 }; 321 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", 322 &kona_smp_ops); 323 324 static const struct smp_operations bcm23550_smp_ops __initconst = { 325 .smp_boot_secondary = bcm23550_boot_secondary, 326 }; 327 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550", 328 &bcm23550_smp_ops); 329 330 static const struct smp_operations nsp_smp_ops __initconst = { 331 .smp_prepare_cpus = bcm_smp_prepare_cpus, 332 .smp_boot_secondary = nsp_boot_secondary, 333 }; 334 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops); 335 336 const struct smp_operations bcm2836_smp_ops __initconst = { 337 .smp_boot_secondary = bcm2836_boot_secondary, 338 }; 339 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops); 340