xref: /openbmc/linux/arch/arm/mach-bcm/platsmp.c (revision 867e6d38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014-2015 Broadcom Corporation
4  * Copyright 2014 Linaro Limited
5  */
6 
7 #include <linux/cpumask.h>
8 #include <linux/delay.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/irqchip/irq-bcm2836.h>
13 #include <linux/jiffies.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/smp.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/smp.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
24 
25 #include "platsmp.h"
26 
27 /* Size of mapped Cortex A9 SCU address space */
28 #define CORTEX_A9_SCU_SIZE	0x58
29 
30 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
31 #define BOOT_ADDR_CPUID_MASK	0x3
32 
33 /* Name of device node property defining secondary boot register location */
34 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
35 #define MPIDR_CPUID_BITMASK	0x3
36 
37 /*
38  * Enable the Cortex A9 Snoop Control Unit
39  *
40  * By the time this is called we already know there are multiple
41  * cores present.  We assume we're running on a Cortex A9 processor,
42  * so any trouble getting the base address register or getting the
43  * SCU base is a problem.
44  *
45  * Return 0 if successful or an error code otherwise.
46  */
47 static int __init scu_a9_enable(void)
48 {
49 	unsigned long config_base;
50 	void __iomem *scu_base;
51 
52 	if (!scu_a9_has_base()) {
53 		pr_err("no configuration base address register!\n");
54 		return -ENXIO;
55 	}
56 
57 	/* Config base address register value is zero for uniprocessor */
58 	config_base = scu_a9_get_base();
59 	if (!config_base) {
60 		pr_err("hardware reports only one core\n");
61 		return -ENOENT;
62 	}
63 
64 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
65 	if (!scu_base) {
66 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
67 			config_base, CORTEX_A9_SCU_SIZE);
68 		return -ENOMEM;
69 	}
70 
71 	scu_enable(scu_base);
72 
73 	iounmap(scu_base);	/* That's the last we'll need of this */
74 
75 	return 0;
76 }
77 
78 static u32 secondary_boot_addr_for(unsigned int cpu)
79 {
80 	u32 secondary_boot_addr = 0;
81 	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
82 
83         if (!cpu_node) {
84 		pr_err("Failed to find device tree node for CPU%u\n", cpu);
85 		return 0;
86 	}
87 
88 	if (of_property_read_u32(cpu_node,
89 				 OF_SECONDARY_BOOT,
90 				 &secondary_boot_addr))
91 		pr_err("required secondary boot register not specified for CPU%u\n",
92 			cpu);
93 
94 	of_node_put(cpu_node);
95 
96 	return secondary_boot_addr;
97 }
98 
99 static int nsp_write_lut(unsigned int cpu)
100 {
101 	void __iomem *sku_rom_lut;
102 	phys_addr_t secondary_startup_phy;
103 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
104 
105 	if (!secondary_boot_addr)
106 		return -EINVAL;
107 
108 	sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr,
109 				      sizeof(phys_addr_t));
110 	if (!sku_rom_lut) {
111 		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
112 		return -ENOMEM;
113 	}
114 
115 	secondary_startup_phy = __pa_symbol(secondary_startup);
116 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
117 
118 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
119 
120 	/* Ensure the write is visible to the secondary core */
121 	smp_wmb();
122 
123 	iounmap(sku_rom_lut);
124 
125 	return 0;
126 }
127 
128 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
129 {
130 	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
131 
132 	/* Enable the SCU on Cortex A9 based SoCs */
133 	if (scu_a9_enable()) {
134 		/* Update the CPU present map to reflect uniprocessor mode */
135 		pr_warn("failed to enable A9 SCU - disabling SMP\n");
136 		init_cpu_present(&only_cpu_0);
137 	}
138 }
139 
140 /*
141  * The ROM code has the secondary cores looping, waiting for an event.
142  * When an event occurs each core examines the bottom two bits of the
143  * secondary boot register.  When a core finds those bits contain its
144  * own core id, it performs initialization, including computing its boot
145  * address by clearing the boot register value's bottom two bits.  The
146  * core signals that it is beginning its execution by writing its boot
147  * address back to the secondary boot register, and finally jumps to
148  * that address.
149  *
150  * So to start a core executing we need to:
151  * - Encode the (hardware) CPU id with the bottom bits of the secondary
152  *   start address.
153  * - Write that value into the secondary boot register.
154  * - Generate an event to wake up the secondary CPU(s).
155  * - Wait for the secondary boot register to be re-written, which
156  *   indicates the secondary core has started.
157  */
158 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
159 {
160 	void __iomem *boot_reg;
161 	phys_addr_t boot_func;
162 	u64 start_clock;
163 	u32 cpu_id;
164 	u32 boot_val;
165 	bool timeout = false;
166 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
167 
168 	cpu_id = cpu_logical_map(cpu);
169 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
170 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
171 		return -EINVAL;
172 	}
173 
174 	if (!secondary_boot_addr)
175 		return -EINVAL;
176 
177 	boot_reg = ioremap((phys_addr_t)secondary_boot_addr,
178 				   sizeof(phys_addr_t));
179 	if (!boot_reg) {
180 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
181 		return -ENOMEM;
182 	}
183 
184 	/*
185 	 * Secondary cores will start in secondary_startup(),
186 	 * defined in "arch/arm/kernel/head.S"
187 	 */
188 	boot_func = __pa_symbol(secondary_startup);
189 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
190 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
191 
192 	/* The core to start is encoded in the low bits */
193 	boot_val = (u32)boot_func | cpu_id;
194 	writel_relaxed(boot_val, boot_reg);
195 
196 	sev();
197 
198 	/* The low bits will be cleared once the core has started */
199 	start_clock = local_clock();
200 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
201 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
202 
203 	iounmap(boot_reg);
204 
205 	if (!timeout)
206 		return 0;
207 
208 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
209 
210 	return -ENXIO;
211 }
212 
213 /* Cluster Dormant Control command to bring CPU into a running state */
214 #define CDC_CMD			6
215 #define CDC_CMD_OFFSET		0
216 #define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
217 
218 /*
219  * BCM23550 has a Cluster Dormant Control block that keeps the core in
220  * idle state. A command needs to be sent to the block to bring the CPU
221  * into running state.
222  */
223 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
224 {
225 	void __iomem *cdc_base;
226 	struct device_node *dn;
227 	char *name;
228 	int ret;
229 
230 	/* Make sure a CDC node exists before booting the
231 	 * secondary core.
232 	 */
233 	name = "brcm,bcm23550-cdc";
234 	dn = of_find_compatible_node(NULL, NULL, name);
235 	if (!dn) {
236 		pr_err("unable to find cdc node\n");
237 		return -ENODEV;
238 	}
239 
240 	cdc_base = of_iomap(dn, 0);
241 	of_node_put(dn);
242 
243 	if (!cdc_base) {
244 		pr_err("unable to remap cdc base register\n");
245 		return -ENOMEM;
246 	}
247 
248 	/* Boot the secondary core */
249 	ret = kona_boot_secondary(cpu, idle);
250 	if (ret)
251 		goto out;
252 
253 	/* Bring this CPU to RUN state so that nIRQ nFIQ
254 	 * signals are unblocked.
255 	 */
256 	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
257 
258 out:
259 	iounmap(cdc_base);
260 
261 	return ret;
262 }
263 
264 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
265 {
266 	int ret;
267 
268 	/*
269 	 * After wake up, secondary core branches to the startup
270 	 * address programmed at SKU ROM LUT location.
271 	 */
272 	ret = nsp_write_lut(cpu);
273 	if (ret) {
274 		pr_err("unable to write startup addr to SKU ROM LUT\n");
275 		goto out;
276 	}
277 
278 	/* Send a CPU wakeup interrupt to the secondary core */
279 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
280 
281 out:
282 	return ret;
283 }
284 
285 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
286 {
287 	void __iomem *intc_base;
288 	struct device_node *dn;
289 	char *name;
290 
291 	name = "brcm,bcm2836-l1-intc";
292 	dn = of_find_compatible_node(NULL, NULL, name);
293 	if (!dn) {
294 		pr_err("unable to find intc node\n");
295 		return -ENODEV;
296 	}
297 
298 	intc_base = of_iomap(dn, 0);
299 	of_node_put(dn);
300 
301 	if (!intc_base) {
302 		pr_err("unable to remap intc base register\n");
303 		return -ENOMEM;
304 	}
305 
306 	writel(virt_to_phys(secondary_startup),
307 	       intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
308 
309 	dsb(sy);
310 	sev();
311 
312 	iounmap(intc_base);
313 
314 	return 0;
315 }
316 
317 static const struct smp_operations kona_smp_ops __initconst = {
318 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
319 	.smp_boot_secondary	= kona_boot_secondary,
320 };
321 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
322 			&kona_smp_ops);
323 
324 static const struct smp_operations bcm23550_smp_ops __initconst = {
325 	.smp_boot_secondary	= bcm23550_boot_secondary,
326 };
327 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
328 			&bcm23550_smp_ops);
329 
330 static const struct smp_operations nsp_smp_ops __initconst = {
331 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
332 	.smp_boot_secondary	= nsp_boot_secondary,
333 };
334 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
335 
336 const struct smp_operations bcm2836_smp_ops __initconst = {
337 	.smp_boot_secondary	= bcm2836_boot_secondary,
338 };
339 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
340