xref: /openbmc/linux/arch/arm/mach-bcm/platsmp.c (revision 56a0eccd)
1 /*
2  * Copyright (C) 2014-2015 Broadcom Corporation
3  * Copyright 2014 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/jiffies.h>
21 #include <linux/of.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 
25 #include <asm/cacheflush.h>
26 #include <asm/smp.h>
27 #include <asm/smp_plat.h>
28 #include <asm/smp_scu.h>
29 
30 /* Size of mapped Cortex A9 SCU address space */
31 #define CORTEX_A9_SCU_SIZE	0x58
32 
33 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
34 #define BOOT_ADDR_CPUID_MASK	0x3
35 
36 /* Name of device node property defining secondary boot register location */
37 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
38 #define MPIDR_CPUID_BITMASK	0x3
39 
40 /* I/O address of register used to coordinate secondary core startup */
41 static u32	secondary_boot_addr;
42 
43 /*
44  * Enable the Cortex A9 Snoop Control Unit
45  *
46  * By the time this is called we already know there are multiple
47  * cores present.  We assume we're running on a Cortex A9 processor,
48  * so any trouble getting the base address register or getting the
49  * SCU base is a problem.
50  *
51  * Return 0 if successful or an error code otherwise.
52  */
53 static int __init scu_a9_enable(void)
54 {
55 	unsigned long config_base;
56 	void __iomem *scu_base;
57 
58 	if (!scu_a9_has_base()) {
59 		pr_err("no configuration base address register!\n");
60 		return -ENXIO;
61 	}
62 
63 	/* Config base address register value is zero for uniprocessor */
64 	config_base = scu_a9_get_base();
65 	if (!config_base) {
66 		pr_err("hardware reports only one core\n");
67 		return -ENOENT;
68 	}
69 
70 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
71 	if (!scu_base) {
72 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
73 			config_base, CORTEX_A9_SCU_SIZE);
74 		return -ENOMEM;
75 	}
76 
77 	scu_enable(scu_base);
78 
79 	iounmap(scu_base);	/* That's the last we'll need of this */
80 
81 	return 0;
82 }
83 
84 static int nsp_write_lut(void)
85 {
86 	void __iomem *sku_rom_lut;
87 	phys_addr_t secondary_startup_phy;
88 
89 	if (!secondary_boot_addr) {
90 		pr_warn("required secondary boot register not specified\n");
91 		return -EINVAL;
92 	}
93 
94 	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
95 						sizeof(secondary_boot_addr));
96 	if (!sku_rom_lut) {
97 		pr_warn("unable to ioremap SKU-ROM LUT register\n");
98 		return -ENOMEM;
99 	}
100 
101 	secondary_startup_phy = virt_to_phys(secondary_startup);
102 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
103 
104 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
105 
106 	/* Ensure the write is visible to the secondary core */
107 	smp_wmb();
108 
109 	iounmap(sku_rom_lut);
110 
111 	return 0;
112 }
113 
114 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
115 {
116 	static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
117 	struct device_node *cpus_node = NULL;
118 	struct device_node *cpu_node = NULL;
119 	int ret;
120 
121 	/*
122 	 * This function is only called via smp_ops->smp_prepare_cpu().
123 	 * That only happens if a "/cpus" device tree node exists
124 	 * and has an "enable-method" property that selects the SMP
125 	 * operations defined herein.
126 	 */
127 	cpus_node = of_find_node_by_path("/cpus");
128 	if (!cpus_node)
129 		return;
130 
131 	for_each_child_of_node(cpus_node, cpu_node) {
132 		u32 cpuid;
133 
134 		if (of_node_cmp(cpu_node->type, "cpu"))
135 			continue;
136 
137 		if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
138 			pr_debug("%s: missing reg property\n",
139 				     cpu_node->full_name);
140 			ret = -ENOENT;
141 			goto out;
142 		}
143 
144 		/*
145 		 * "secondary-boot-reg" property should be defined only
146 		 * for secondary cpu
147 		 */
148 		if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
149 			/*
150 			 * Our secondary enable method requires a
151 			 * "secondary-boot-reg" property to specify a register
152 			 * address used to request the ROM code boot a secondary
153 			 * core. If we have any trouble getting this we fall
154 			 * back to uniprocessor mode.
155 			 */
156 			if (of_property_read_u32(cpu_node,
157 						OF_SECONDARY_BOOT,
158 						&secondary_boot_addr)) {
159 				pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
160 					cpu_node->name);
161 				ret = -ENOENT;
162 				goto out;
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
169 	 * returned, the SoC reported a uniprocessor configuration.
170 	 * We bail on any other error.
171 	 */
172 	ret = scu_a9_enable();
173 out:
174 	of_node_put(cpu_node);
175 	of_node_put(cpus_node);
176 
177 	if (ret) {
178 		/* Update the CPU present map to reflect uniprocessor mode */
179 		pr_warn("disabling SMP\n");
180 		init_cpu_present(&only_cpu_0);
181 	}
182 }
183 
184 /*
185  * The ROM code has the secondary cores looping, waiting for an event.
186  * When an event occurs each core examines the bottom two bits of the
187  * secondary boot register.  When a core finds those bits contain its
188  * own core id, it performs initialization, including computing its boot
189  * address by clearing the boot register value's bottom two bits.  The
190  * core signals that it is beginning its execution by writing its boot
191  * address back to the secondary boot register, and finally jumps to
192  * that address.
193  *
194  * So to start a core executing we need to:
195  * - Encode the (hardware) CPU id with the bottom bits of the secondary
196  *   start address.
197  * - Write that value into the secondary boot register.
198  * - Generate an event to wake up the secondary CPU(s).
199  * - Wait for the secondary boot register to be re-written, which
200  *   indicates the secondary core has started.
201  */
202 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
203 {
204 	void __iomem *boot_reg;
205 	phys_addr_t boot_func;
206 	u64 start_clock;
207 	u32 cpu_id;
208 	u32 boot_val;
209 	bool timeout = false;
210 
211 	cpu_id = cpu_logical_map(cpu);
212 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
213 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
214 		return -EINVAL;
215 	}
216 
217 	if (!secondary_boot_addr) {
218 		pr_err("required secondary boot register not specified\n");
219 		return -EINVAL;
220 	}
221 
222 	boot_reg = ioremap_nocache(
223 			(phys_addr_t)secondary_boot_addr, sizeof(u32));
224 	if (!boot_reg) {
225 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
226 		return -ENOMEM;
227 	}
228 
229 	/*
230 	 * Secondary cores will start in secondary_startup(),
231 	 * defined in "arch/arm/kernel/head.S"
232 	 */
233 	boot_func = virt_to_phys(secondary_startup);
234 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
235 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
236 
237 	/* The core to start is encoded in the low bits */
238 	boot_val = (u32)boot_func | cpu_id;
239 	writel_relaxed(boot_val, boot_reg);
240 
241 	sev();
242 
243 	/* The low bits will be cleared once the core has started */
244 	start_clock = local_clock();
245 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
246 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
247 
248 	iounmap(boot_reg);
249 
250 	if (!timeout)
251 		return 0;
252 
253 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
254 
255 	return -ENXIO;
256 }
257 
258 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
259 {
260 	int ret;
261 
262 	/*
263 	 * After wake up, secondary core branches to the startup
264 	 * address programmed at SKU ROM LUT location.
265 	 */
266 	ret = nsp_write_lut();
267 	if (ret) {
268 		pr_err("unable to write startup addr to SKU ROM LUT\n");
269 		goto out;
270 	}
271 
272 	/* Send a CPU wakeup interrupt to the secondary core */
273 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
274 
275 out:
276 	return ret;
277 }
278 
279 static const struct smp_operations bcm_smp_ops __initconst = {
280 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
281 	.smp_boot_secondary	= kona_boot_secondary,
282 };
283 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
284 			&bcm_smp_ops);
285 
286 static const struct smp_operations nsp_smp_ops __initconst = {
287 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
288 	.smp_boot_secondary	= nsp_boot_secondary,
289 };
290 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
291