xref: /openbmc/linux/arch/arm/mach-bcm/platsmp.c (revision 32981ea5)
1 /*
2  * Copyright (C) 2014-2015 Broadcom Corporation
3  * Copyright 2014 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/jiffies.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 
26 #include <asm/cacheflush.h>
27 #include <asm/smp.h>
28 #include <asm/smp_plat.h>
29 #include <asm/smp_scu.h>
30 
31 /* Size of mapped Cortex A9 SCU address space */
32 #define CORTEX_A9_SCU_SIZE	0x58
33 
34 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
35 #define BOOT_ADDR_CPUID_MASK	0x3
36 
37 /* Name of device node property defining secondary boot register location */
38 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
39 #define MPIDR_CPUID_BITMASK	0x3
40 
41 /* I/O address of register used to coordinate secondary core startup */
42 static u32	secondary_boot_addr;
43 
44 /*
45  * Enable the Cortex A9 Snoop Control Unit
46  *
47  * By the time this is called we already know there are multiple
48  * cores present.  We assume we're running on a Cortex A9 processor,
49  * so any trouble getting the base address register or getting the
50  * SCU base is a problem.
51  *
52  * Return 0 if successful or an error code otherwise.
53  */
54 static int __init scu_a9_enable(void)
55 {
56 	unsigned long config_base;
57 	void __iomem *scu_base;
58 
59 	if (!scu_a9_has_base()) {
60 		pr_err("no configuration base address register!\n");
61 		return -ENXIO;
62 	}
63 
64 	/* Config base address register value is zero for uniprocessor */
65 	config_base = scu_a9_get_base();
66 	if (!config_base) {
67 		pr_err("hardware reports only one core\n");
68 		return -ENOENT;
69 	}
70 
71 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
72 	if (!scu_base) {
73 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
74 			config_base, CORTEX_A9_SCU_SIZE);
75 		return -ENOMEM;
76 	}
77 
78 	scu_enable(scu_base);
79 
80 	iounmap(scu_base);	/* That's the last we'll need of this */
81 
82 	return 0;
83 }
84 
85 static int nsp_write_lut(void)
86 {
87 	void __iomem *sku_rom_lut;
88 	phys_addr_t secondary_startup_phy;
89 
90 	if (!secondary_boot_addr) {
91 		pr_warn("required secondary boot register not specified\n");
92 		return -EINVAL;
93 	}
94 
95 	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
96 						sizeof(secondary_boot_addr));
97 	if (!sku_rom_lut) {
98 		pr_warn("unable to ioremap SKU-ROM LUT register\n");
99 		return -ENOMEM;
100 	}
101 
102 	secondary_startup_phy = virt_to_phys(secondary_startup);
103 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
104 
105 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
106 
107 	/* Ensure the write is visible to the secondary core */
108 	smp_wmb();
109 
110 	iounmap(sku_rom_lut);
111 
112 	return 0;
113 }
114 
115 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
116 {
117 	static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
118 	struct device_node *cpus_node = NULL;
119 	struct device_node *cpu_node = NULL;
120 	int ret;
121 
122 	/*
123 	 * This function is only called via smp_ops->smp_prepare_cpu().
124 	 * That only happens if a "/cpus" device tree node exists
125 	 * and has an "enable-method" property that selects the SMP
126 	 * operations defined herein.
127 	 */
128 	cpus_node = of_find_node_by_path("/cpus");
129 	if (!cpus_node)
130 		return;
131 
132 	for_each_child_of_node(cpus_node, cpu_node) {
133 		u32 cpuid;
134 
135 		if (of_node_cmp(cpu_node->type, "cpu"))
136 			continue;
137 
138 		if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
139 			pr_debug("%s: missing reg property\n",
140 				     cpu_node->full_name);
141 			ret = -ENOENT;
142 			goto out;
143 		}
144 
145 		/*
146 		 * "secondary-boot-reg" property should be defined only
147 		 * for secondary cpu
148 		 */
149 		if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
150 			/*
151 			 * Our secondary enable method requires a
152 			 * "secondary-boot-reg" property to specify a register
153 			 * address used to request the ROM code boot a secondary
154 			 * core. If we have any trouble getting this we fall
155 			 * back to uniprocessor mode.
156 			 */
157 			if (of_property_read_u32(cpu_node,
158 						OF_SECONDARY_BOOT,
159 						&secondary_boot_addr)) {
160 				pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
161 					cpu_node->name);
162 				ret = -ENOENT;
163 				goto out;
164 			}
165 		}
166 	}
167 
168 	/*
169 	 * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
170 	 * returned, the SoC reported a uniprocessor configuration.
171 	 * We bail on any other error.
172 	 */
173 	ret = scu_a9_enable();
174 out:
175 	of_node_put(cpu_node);
176 	of_node_put(cpus_node);
177 
178 	if (ret) {
179 		/* Update the CPU present map to reflect uniprocessor mode */
180 		pr_warn("disabling SMP\n");
181 		init_cpu_present(&only_cpu_0);
182 	}
183 }
184 
185 /*
186  * The ROM code has the secondary cores looping, waiting for an event.
187  * When an event occurs each core examines the bottom two bits of the
188  * secondary boot register.  When a core finds those bits contain its
189  * own core id, it performs initialization, including computing its boot
190  * address by clearing the boot register value's bottom two bits.  The
191  * core signals that it is beginning its execution by writing its boot
192  * address back to the secondary boot register, and finally jumps to
193  * that address.
194  *
195  * So to start a core executing we need to:
196  * - Encode the (hardware) CPU id with the bottom bits of the secondary
197  *   start address.
198  * - Write that value into the secondary boot register.
199  * - Generate an event to wake up the secondary CPU(s).
200  * - Wait for the secondary boot register to be re-written, which
201  *   indicates the secondary core has started.
202  */
203 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
204 {
205 	void __iomem *boot_reg;
206 	phys_addr_t boot_func;
207 	u64 start_clock;
208 	u32 cpu_id;
209 	u32 boot_val;
210 	bool timeout = false;
211 
212 	cpu_id = cpu_logical_map(cpu);
213 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
214 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
215 		return -EINVAL;
216 	}
217 
218 	if (!secondary_boot_addr) {
219 		pr_err("required secondary boot register not specified\n");
220 		return -EINVAL;
221 	}
222 
223 	boot_reg = ioremap_nocache(
224 			(phys_addr_t)secondary_boot_addr, sizeof(u32));
225 	if (!boot_reg) {
226 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
227 		return -ENOMEM;
228 	}
229 
230 	/*
231 	 * Secondary cores will start in secondary_startup(),
232 	 * defined in "arch/arm/kernel/head.S"
233 	 */
234 	boot_func = virt_to_phys(secondary_startup);
235 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
236 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
237 
238 	/* The core to start is encoded in the low bits */
239 	boot_val = (u32)boot_func | cpu_id;
240 	writel_relaxed(boot_val, boot_reg);
241 
242 	sev();
243 
244 	/* The low bits will be cleared once the core has started */
245 	start_clock = local_clock();
246 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
247 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
248 
249 	iounmap(boot_reg);
250 
251 	if (!timeout)
252 		return 0;
253 
254 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
255 
256 	return -ENXIO;
257 }
258 
259 /* Cluster Dormant Control command to bring CPU into a running state */
260 #define CDC_CMD			6
261 #define CDC_CMD_OFFSET		0
262 #define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
263 
264 /*
265  * BCM23550 has a Cluster Dormant Control block that keeps the core in
266  * idle state. A command needs to be sent to the block to bring the CPU
267  * into running state.
268  */
269 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
270 {
271 	void __iomem *cdc_base;
272 	struct device_node *dn;
273 	char *name;
274 	int ret;
275 
276 	/* Make sure a CDC node exists before booting the
277 	 * secondary core.
278 	 */
279 	name = "brcm,bcm23550-cdc";
280 	dn = of_find_compatible_node(NULL, NULL, name);
281 	if (!dn) {
282 		pr_err("unable to find cdc node\n");
283 		return -ENODEV;
284 	}
285 
286 	cdc_base = of_iomap(dn, 0);
287 	of_node_put(dn);
288 
289 	if (!cdc_base) {
290 		pr_err("unable to remap cdc base register\n");
291 		return -ENOMEM;
292 	}
293 
294 	/* Boot the secondary core */
295 	ret = kona_boot_secondary(cpu, idle);
296 	if (ret)
297 		goto out;
298 
299 	/* Bring this CPU to RUN state so that nIRQ nFIQ
300 	 * signals are unblocked.
301 	 */
302 	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
303 
304 out:
305 	iounmap(cdc_base);
306 
307 	return ret;
308 }
309 
310 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
311 {
312 	int ret;
313 
314 	/*
315 	 * After wake up, secondary core branches to the startup
316 	 * address programmed at SKU ROM LUT location.
317 	 */
318 	ret = nsp_write_lut();
319 	if (ret) {
320 		pr_err("unable to write startup addr to SKU ROM LUT\n");
321 		goto out;
322 	}
323 
324 	/* Send a CPU wakeup interrupt to the secondary core */
325 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
326 
327 out:
328 	return ret;
329 }
330 
331 static const struct smp_operations bcm_smp_ops __initconst = {
332 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
333 	.smp_boot_secondary	= kona_boot_secondary,
334 };
335 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
336 			&bcm_smp_ops);
337 
338 static const struct smp_operations bcm23550_smp_ops __initconst = {
339 	.smp_boot_secondary	= bcm23550_boot_secondary,
340 };
341 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
342 			&bcm23550_smp_ops);
343 
344 static const struct smp_operations nsp_smp_ops __initconst = {
345 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
346 	.smp_boot_secondary	= nsp_boot_secondary,
347 };
348 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
349