1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2014-2015 Broadcom Corporation
4 * Copyright 2014 Linaro Limited
5 */
6
7 #include <linux/cpumask.h>
8 #include <linux/delay.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/irqchip/irq-bcm2836.h>
13 #include <linux/jiffies.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/smp.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/smp.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
24
25 #include "platsmp.h"
26
27 /* Size of mapped Cortex A9 SCU address space */
28 #define CORTEX_A9_SCU_SIZE 0x58
29
30 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
31 #define BOOT_ADDR_CPUID_MASK 0x3
32
33 /* Name of device node property defining secondary boot register location */
34 #define OF_SECONDARY_BOOT "secondary-boot-reg"
35 #define MPIDR_CPUID_BITMASK 0x3
36
37 /*
38 * Enable the Cortex A9 Snoop Control Unit
39 *
40 * By the time this is called we already know there are multiple
41 * cores present. We assume we're running on a Cortex A9 processor,
42 * so any trouble getting the base address register or getting the
43 * SCU base is a problem.
44 *
45 * Return 0 if successful or an error code otherwise.
46 */
scu_a9_enable(void)47 static int __init scu_a9_enable(void)
48 {
49 unsigned long config_base;
50 void __iomem *scu_base;
51
52 if (!scu_a9_has_base()) {
53 pr_err("no configuration base address register!\n");
54 return -ENXIO;
55 }
56
57 /* Config base address register value is zero for uniprocessor */
58 config_base = scu_a9_get_base();
59 if (!config_base) {
60 pr_err("hardware reports only one core\n");
61 return -ENOENT;
62 }
63
64 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
65 if (!scu_base) {
66 pr_err("failed to remap config base (%lu/%u) for SCU\n",
67 config_base, CORTEX_A9_SCU_SIZE);
68 return -ENOMEM;
69 }
70
71 scu_enable(scu_base);
72
73 iounmap(scu_base); /* That's the last we'll need of this */
74
75 return 0;
76 }
77
secondary_boot_addr_for(unsigned int cpu)78 static u32 secondary_boot_addr_for(unsigned int cpu)
79 {
80 u32 secondary_boot_addr = 0;
81 struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
82
83 if (!cpu_node) {
84 pr_err("Failed to find device tree node for CPU%u\n", cpu);
85 return 0;
86 }
87
88 if (of_property_read_u32(cpu_node,
89 OF_SECONDARY_BOOT,
90 &secondary_boot_addr))
91 pr_err("required secondary boot register not specified for CPU%u\n",
92 cpu);
93
94 of_node_put(cpu_node);
95
96 return secondary_boot_addr;
97 }
98
nsp_write_lut(unsigned int cpu)99 static int nsp_write_lut(unsigned int cpu)
100 {
101 void __iomem *sku_rom_lut;
102 phys_addr_t secondary_startup_phy;
103 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
104
105 if (!secondary_boot_addr)
106 return -EINVAL;
107
108 sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr,
109 sizeof(phys_addr_t));
110 if (!sku_rom_lut) {
111 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
112 return -ENOMEM;
113 }
114
115 secondary_startup_phy = __pa_symbol(secondary_startup);
116 BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
117
118 writel_relaxed(secondary_startup_phy, sku_rom_lut);
119
120 /* Ensure the write is visible to the secondary core */
121 smp_wmb();
122
123 iounmap(sku_rom_lut);
124
125 return 0;
126 }
127
bcm_smp_prepare_cpus(unsigned int max_cpus)128 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
129 {
130 const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
131
132 /* Enable the SCU on Cortex A9 based SoCs */
133 if (scu_a9_enable()) {
134 /* Update the CPU present map to reflect uniprocessor mode */
135 pr_warn("failed to enable A9 SCU - disabling SMP\n");
136 init_cpu_present(&only_cpu_0);
137 }
138 }
139
140 /*
141 * The ROM code has the secondary cores looping, waiting for an event.
142 * When an event occurs each core examines the bottom two bits of the
143 * secondary boot register. When a core finds those bits contain its
144 * own core id, it performs initialization, including computing its boot
145 * address by clearing the boot register value's bottom two bits. The
146 * core signals that it is beginning its execution by writing its boot
147 * address back to the secondary boot register, and finally jumps to
148 * that address.
149 *
150 * So to start a core executing we need to:
151 * - Encode the (hardware) CPU id with the bottom bits of the secondary
152 * start address.
153 * - Write that value into the secondary boot register.
154 * - Generate an event to wake up the secondary CPU(s).
155 * - Wait for the secondary boot register to be re-written, which
156 * indicates the secondary core has started.
157 */
kona_boot_secondary(unsigned int cpu,struct task_struct * idle)158 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
159 {
160 void __iomem *boot_reg;
161 phys_addr_t boot_func;
162 u64 start_clock;
163 u32 cpu_id;
164 u32 boot_val;
165 bool timeout = false;
166 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
167
168 cpu_id = cpu_logical_map(cpu);
169 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
170 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
171 return -EINVAL;
172 }
173
174 if (!secondary_boot_addr)
175 return -EINVAL;
176
177 boot_reg = ioremap((phys_addr_t)secondary_boot_addr,
178 sizeof(phys_addr_t));
179 if (!boot_reg) {
180 pr_err("unable to map boot register for cpu %u\n", cpu_id);
181 return -ENOMEM;
182 }
183
184 /*
185 * Secondary cores will start in secondary_startup(),
186 * defined in "arch/arm/kernel/head.S"
187 */
188 boot_func = __pa_symbol(secondary_startup);
189 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
190 BUG_ON(boot_func > (phys_addr_t)U32_MAX);
191
192 /* The core to start is encoded in the low bits */
193 boot_val = (u32)boot_func | cpu_id;
194 writel_relaxed(boot_val, boot_reg);
195
196 sev();
197
198 /* The low bits will be cleared once the core has started */
199 start_clock = local_clock();
200 while (!timeout && readl_relaxed(boot_reg) == boot_val)
201 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
202
203 iounmap(boot_reg);
204
205 if (!timeout)
206 return 0;
207
208 pr_err("timeout waiting for cpu %u to start\n", cpu_id);
209
210 return -ENXIO;
211 }
212
213 /* Cluster Dormant Control command to bring CPU into a running state */
214 #define CDC_CMD 6
215 #define CDC_CMD_OFFSET 0
216 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
217
218 /*
219 * BCM23550 has a Cluster Dormant Control block that keeps the core in
220 * idle state. A command needs to be sent to the block to bring the CPU
221 * into running state.
222 */
bcm23550_boot_secondary(unsigned int cpu,struct task_struct * idle)223 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
224 {
225 void __iomem *cdc_base;
226 struct device_node *dn;
227 char *name;
228 int ret;
229
230 /* Make sure a CDC node exists before booting the
231 * secondary core.
232 */
233 name = "brcm,bcm23550-cdc";
234 dn = of_find_compatible_node(NULL, NULL, name);
235 if (!dn) {
236 pr_err("unable to find cdc node\n");
237 return -ENODEV;
238 }
239
240 cdc_base = of_iomap(dn, 0);
241 of_node_put(dn);
242
243 if (!cdc_base) {
244 pr_err("unable to remap cdc base register\n");
245 return -ENOMEM;
246 }
247
248 /* Boot the secondary core */
249 ret = kona_boot_secondary(cpu, idle);
250 if (ret)
251 goto out;
252
253 /* Bring this CPU to RUN state so that nIRQ nFIQ
254 * signals are unblocked.
255 */
256 writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
257
258 out:
259 iounmap(cdc_base);
260
261 return ret;
262 }
263
nsp_boot_secondary(unsigned int cpu,struct task_struct * idle)264 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
265 {
266 int ret;
267
268 /*
269 * After wake up, secondary core branches to the startup
270 * address programmed at SKU ROM LUT location.
271 */
272 ret = nsp_write_lut(cpu);
273 if (ret) {
274 pr_err("unable to write startup addr to SKU ROM LUT\n");
275 goto out;
276 }
277
278 /* Send a CPU wakeup interrupt to the secondary core */
279 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
280
281 out:
282 return ret;
283 }
284
bcm2836_boot_secondary(unsigned int cpu,struct task_struct * idle)285 static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle)
286 {
287 void __iomem *intc_base;
288 struct device_node *dn;
289 char *name;
290
291 name = "brcm,bcm2836-l1-intc";
292 dn = of_find_compatible_node(NULL, NULL, name);
293 if (!dn) {
294 pr_err("unable to find intc node\n");
295 return -ENODEV;
296 }
297
298 intc_base = of_iomap(dn, 0);
299 of_node_put(dn);
300
301 if (!intc_base) {
302 pr_err("unable to remap intc base register\n");
303 return -ENOMEM;
304 }
305
306 writel(virt_to_phys(secondary_startup),
307 intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu);
308
309 dsb(sy);
310 sev();
311
312 iounmap(intc_base);
313
314 return 0;
315 }
316
317 static const struct smp_operations kona_smp_ops __initconst = {
318 .smp_prepare_cpus = bcm_smp_prepare_cpus,
319 .smp_boot_secondary = kona_boot_secondary,
320 };
321 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
322 &kona_smp_ops);
323
324 static const struct smp_operations bcm23550_smp_ops __initconst = {
325 .smp_boot_secondary = bcm23550_boot_secondary,
326 };
327 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
328 &bcm23550_smp_ops);
329
330 static const struct smp_operations nsp_smp_ops __initconst = {
331 .smp_prepare_cpus = bcm_smp_prepare_cpus,
332 .smp_boot_secondary = nsp_boot_secondary,
333 };
334 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
335
336 const struct smp_operations bcm2836_smp_ops __initconst = {
337 .smp_boot_secondary = bcm2836_boot_secondary,
338 };
339 CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
340