xref: /openbmc/linux/arch/arm/kernel/topology.c (revision d236d361)
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/cpu.h>
15 #include <linux/cpufreq.h>
16 #include <linux/cpumask.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/percpu.h>
20 #include <linux/node.h>
21 #include <linux/nodemask.h>
22 #include <linux/of.h>
23 #include <linux/sched.h>
24 #include <linux/sched/topology.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 
28 #include <asm/cpu.h>
29 #include <asm/cputype.h>
30 #include <asm/topology.h>
31 
32 /*
33  * cpu capacity scale management
34  */
35 
36 /*
37  * cpu capacity table
38  * This per cpu data structure describes the relative capacity of each core.
39  * On a heteregenous system, cores don't have the same computation capacity
40  * and we reflect that difference in the cpu_capacity field so the scheduler
41  * can take this difference into account during load balance. A per cpu
42  * structure is preferred because each CPU updates its own cpu_capacity field
43  * during the load balance except for idle cores. One idle core is selected
44  * to run the rebalance_domains for all idle cores and the cpu_capacity can be
45  * updated during this sequence.
46  */
47 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
48 static DEFINE_MUTEX(cpu_scale_mutex);
49 
50 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
51 {
52 	return per_cpu(cpu_scale, cpu);
53 }
54 
55 static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
56 {
57 	per_cpu(cpu_scale, cpu) = capacity;
58 }
59 
60 #ifdef CONFIG_PROC_SYSCTL
61 static ssize_t cpu_capacity_show(struct device *dev,
62 				 struct device_attribute *attr,
63 				 char *buf)
64 {
65 	struct cpu *cpu = container_of(dev, struct cpu, dev);
66 
67 	return sprintf(buf, "%lu\n",
68 			arch_scale_cpu_capacity(NULL, cpu->dev.id));
69 }
70 
71 static ssize_t cpu_capacity_store(struct device *dev,
72 				  struct device_attribute *attr,
73 				  const char *buf,
74 				  size_t count)
75 {
76 	struct cpu *cpu = container_of(dev, struct cpu, dev);
77 	int this_cpu = cpu->dev.id, i;
78 	unsigned long new_capacity;
79 	ssize_t ret;
80 
81 	if (count) {
82 		ret = kstrtoul(buf, 0, &new_capacity);
83 		if (ret)
84 			return ret;
85 		if (new_capacity > SCHED_CAPACITY_SCALE)
86 			return -EINVAL;
87 
88 		mutex_lock(&cpu_scale_mutex);
89 		for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
90 			set_capacity_scale(i, new_capacity);
91 		mutex_unlock(&cpu_scale_mutex);
92 	}
93 
94 	return count;
95 }
96 
97 static DEVICE_ATTR_RW(cpu_capacity);
98 
99 static int register_cpu_capacity_sysctl(void)
100 {
101 	int i;
102 	struct device *cpu;
103 
104 	for_each_possible_cpu(i) {
105 		cpu = get_cpu_device(i);
106 		if (!cpu) {
107 			pr_err("%s: too early to get CPU%d device!\n",
108 			       __func__, i);
109 			continue;
110 		}
111 		device_create_file(cpu, &dev_attr_cpu_capacity);
112 	}
113 
114 	return 0;
115 }
116 subsys_initcall(register_cpu_capacity_sysctl);
117 #endif
118 
119 #ifdef CONFIG_OF
120 struct cpu_efficiency {
121 	const char *compatible;
122 	unsigned long efficiency;
123 };
124 
125 /*
126  * Table of relative efficiency of each processors
127  * The efficiency value must fit in 20bit and the final
128  * cpu_scale value must be in the range
129  *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
130  * in order to return at most 1 when DIV_ROUND_CLOSEST
131  * is used to compute the capacity of a CPU.
132  * Processors that are not defined in the table,
133  * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
134  */
135 static const struct cpu_efficiency table_efficiency[] = {
136 	{"arm,cortex-a15", 3891},
137 	{"arm,cortex-a7",  2048},
138 	{NULL, },
139 };
140 
141 static unsigned long *__cpu_capacity;
142 #define cpu_capacity(cpu)	__cpu_capacity[cpu]
143 
144 static unsigned long middle_capacity = 1;
145 static bool cap_from_dt = true;
146 static u32 *raw_capacity;
147 static bool cap_parsing_failed;
148 static u32 capacity_scale;
149 
150 static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
151 {
152 	int ret = 1;
153 	u32 cpu_capacity;
154 
155 	if (cap_parsing_failed)
156 		return !ret;
157 
158 	ret = of_property_read_u32(cpu_node,
159 				   "capacity-dmips-mhz",
160 				   &cpu_capacity);
161 	if (!ret) {
162 		if (!raw_capacity) {
163 			raw_capacity = kcalloc(num_possible_cpus(),
164 					       sizeof(*raw_capacity),
165 					       GFP_KERNEL);
166 			if (!raw_capacity) {
167 				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
168 				cap_parsing_failed = true;
169 				return !ret;
170 			}
171 		}
172 		capacity_scale = max(cpu_capacity, capacity_scale);
173 		raw_capacity[cpu] = cpu_capacity;
174 		pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
175 			cpu_node->full_name, raw_capacity[cpu]);
176 	} else {
177 		if (raw_capacity) {
178 			pr_err("cpu_capacity: missing %s raw capacity\n",
179 				cpu_node->full_name);
180 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
181 		}
182 		cap_parsing_failed = true;
183 		kfree(raw_capacity);
184 	}
185 
186 	return !ret;
187 }
188 
189 static void normalize_cpu_capacity(void)
190 {
191 	u64 capacity;
192 	int cpu;
193 
194 	if (!raw_capacity || cap_parsing_failed)
195 		return;
196 
197 	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
198 	mutex_lock(&cpu_scale_mutex);
199 	for_each_possible_cpu(cpu) {
200 		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
201 			/ capacity_scale;
202 		set_capacity_scale(cpu, capacity);
203 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
204 			cpu, arch_scale_cpu_capacity(NULL, cpu));
205 	}
206 	mutex_unlock(&cpu_scale_mutex);
207 }
208 
209 #ifdef CONFIG_CPU_FREQ
210 static cpumask_var_t cpus_to_visit;
211 static bool cap_parsing_done;
212 static void parsing_done_workfn(struct work_struct *work);
213 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
214 
215 static int
216 init_cpu_capacity_callback(struct notifier_block *nb,
217 			   unsigned long val,
218 			   void *data)
219 {
220 	struct cpufreq_policy *policy = data;
221 	int cpu;
222 
223 	if (cap_parsing_failed || cap_parsing_done)
224 		return 0;
225 
226 	switch (val) {
227 	case CPUFREQ_NOTIFY:
228 		pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
229 				cpumask_pr_args(policy->related_cpus),
230 				cpumask_pr_args(cpus_to_visit));
231 		cpumask_andnot(cpus_to_visit,
232 			       cpus_to_visit,
233 			       policy->related_cpus);
234 		for_each_cpu(cpu, policy->related_cpus) {
235 			raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
236 					    policy->cpuinfo.max_freq / 1000UL;
237 			capacity_scale = max(raw_capacity[cpu], capacity_scale);
238 		}
239 		if (cpumask_empty(cpus_to_visit)) {
240 			normalize_cpu_capacity();
241 			kfree(raw_capacity);
242 			pr_debug("cpu_capacity: parsing done\n");
243 			cap_parsing_done = true;
244 			schedule_work(&parsing_done_work);
245 		}
246 	}
247 	return 0;
248 }
249 
250 static struct notifier_block init_cpu_capacity_notifier = {
251 	.notifier_call = init_cpu_capacity_callback,
252 };
253 
254 static int __init register_cpufreq_notifier(void)
255 {
256 	if (cap_parsing_failed)
257 		return -EINVAL;
258 
259 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
260 		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
261 		return -ENOMEM;
262 	}
263 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
264 
265 	return cpufreq_register_notifier(&init_cpu_capacity_notifier,
266 					 CPUFREQ_POLICY_NOTIFIER);
267 }
268 core_initcall(register_cpufreq_notifier);
269 
270 static void parsing_done_workfn(struct work_struct *work)
271 {
272 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
273 					 CPUFREQ_POLICY_NOTIFIER);
274 }
275 
276 #else
277 static int __init free_raw_capacity(void)
278 {
279 	kfree(raw_capacity);
280 
281 	return 0;
282 }
283 core_initcall(free_raw_capacity);
284 #endif
285 
286 /*
287  * Iterate all CPUs' descriptor in DT and compute the efficiency
288  * (as per table_efficiency). Also calculate a middle efficiency
289  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
290  * This is later used to scale the cpu_capacity field such that an
291  * 'average' CPU is of middle capacity. Also see the comments near
292  * table_efficiency[] and update_cpu_capacity().
293  */
294 static void __init parse_dt_topology(void)
295 {
296 	const struct cpu_efficiency *cpu_eff;
297 	struct device_node *cn = NULL;
298 	unsigned long min_capacity = ULONG_MAX;
299 	unsigned long max_capacity = 0;
300 	unsigned long capacity = 0;
301 	int cpu = 0;
302 
303 	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
304 				 GFP_NOWAIT);
305 
306 	cn = of_find_node_by_path("/cpus");
307 	if (!cn) {
308 		pr_err("No CPU information found in DT\n");
309 		return;
310 	}
311 
312 	for_each_possible_cpu(cpu) {
313 		const u32 *rate;
314 		int len;
315 
316 		/* too early to use cpu->of_node */
317 		cn = of_get_cpu_node(cpu, NULL);
318 		if (!cn) {
319 			pr_err("missing device node for CPU %d\n", cpu);
320 			continue;
321 		}
322 
323 		if (parse_cpu_capacity(cn, cpu)) {
324 			of_node_put(cn);
325 			continue;
326 		}
327 
328 		cap_from_dt = false;
329 
330 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
331 			if (of_device_is_compatible(cn, cpu_eff->compatible))
332 				break;
333 
334 		if (cpu_eff->compatible == NULL)
335 			continue;
336 
337 		rate = of_get_property(cn, "clock-frequency", &len);
338 		if (!rate || len != 4) {
339 			pr_err("%s missing clock-frequency property\n",
340 				cn->full_name);
341 			continue;
342 		}
343 
344 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
345 
346 		/* Save min capacity of the system */
347 		if (capacity < min_capacity)
348 			min_capacity = capacity;
349 
350 		/* Save max capacity of the system */
351 		if (capacity > max_capacity)
352 			max_capacity = capacity;
353 
354 		cpu_capacity(cpu) = capacity;
355 	}
356 
357 	/* If min and max capacities are equals, we bypass the update of the
358 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
359 	 * compute a middle_capacity factor that will ensure that the capacity
360 	 * of an 'average' CPU of the system will be as close as possible to
361 	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
362 	 * constraint explained near table_efficiency[].
363 	 */
364 	if (4*max_capacity < (3*(max_capacity + min_capacity)))
365 		middle_capacity = (min_capacity + max_capacity)
366 				>> (SCHED_CAPACITY_SHIFT+1);
367 	else
368 		middle_capacity = ((max_capacity / 3)
369 				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
370 
371 	if (cap_from_dt && !cap_parsing_failed)
372 		normalize_cpu_capacity();
373 }
374 
375 /*
376  * Look for a customed capacity of a CPU in the cpu_capacity table during the
377  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
378  * function returns directly for SMP system.
379  */
380 static void update_cpu_capacity(unsigned int cpu)
381 {
382 	if (!cpu_capacity(cpu) || cap_from_dt)
383 		return;
384 
385 	set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity);
386 
387 	pr_info("CPU%u: update cpu_capacity %lu\n",
388 		cpu, arch_scale_cpu_capacity(NULL, cpu));
389 }
390 
391 #else
392 static inline void parse_dt_topology(void) {}
393 static inline void update_cpu_capacity(unsigned int cpuid) {}
394 #endif
395 
396  /*
397  * cpu topology table
398  */
399 struct cputopo_arm cpu_topology[NR_CPUS];
400 EXPORT_SYMBOL_GPL(cpu_topology);
401 
402 const struct cpumask *cpu_coregroup_mask(int cpu)
403 {
404 	return &cpu_topology[cpu].core_sibling;
405 }
406 
407 /*
408  * The current assumption is that we can power gate each core independently.
409  * This will be superseded by DT binding once available.
410  */
411 const struct cpumask *cpu_corepower_mask(int cpu)
412 {
413 	return &cpu_topology[cpu].thread_sibling;
414 }
415 
416 static void update_siblings_masks(unsigned int cpuid)
417 {
418 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
419 	int cpu;
420 
421 	/* update core and thread sibling masks */
422 	for_each_possible_cpu(cpu) {
423 		cpu_topo = &cpu_topology[cpu];
424 
425 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
426 			continue;
427 
428 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
429 		if (cpu != cpuid)
430 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
431 
432 		if (cpuid_topo->core_id != cpu_topo->core_id)
433 			continue;
434 
435 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
436 		if (cpu != cpuid)
437 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
438 	}
439 	smp_wmb();
440 }
441 
442 /*
443  * store_cpu_topology is called at boot when only one cpu is running
444  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
445  * which prevents simultaneous write access to cpu_topology array
446  */
447 void store_cpu_topology(unsigned int cpuid)
448 {
449 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
450 	unsigned int mpidr;
451 
452 	/* If the cpu topology has been already set, just return */
453 	if (cpuid_topo->core_id != -1)
454 		return;
455 
456 	mpidr = read_cpuid_mpidr();
457 
458 	/* create cpu topology mapping */
459 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
460 		/*
461 		 * This is a multiprocessor system
462 		 * multiprocessor format & multiprocessor mode field are set
463 		 */
464 
465 		if (mpidr & MPIDR_MT_BITMASK) {
466 			/* core performance interdependency */
467 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
468 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
469 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
470 		} else {
471 			/* largely independent cores */
472 			cpuid_topo->thread_id = -1;
473 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
474 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
475 		}
476 	} else {
477 		/*
478 		 * This is an uniprocessor system
479 		 * we are in multiprocessor format but uniprocessor system
480 		 * or in the old uniprocessor format
481 		 */
482 		cpuid_topo->thread_id = -1;
483 		cpuid_topo->core_id = 0;
484 		cpuid_topo->socket_id = -1;
485 	}
486 
487 	update_siblings_masks(cpuid);
488 
489 	update_cpu_capacity(cpuid);
490 
491 	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
492 		cpuid, cpu_topology[cpuid].thread_id,
493 		cpu_topology[cpuid].core_id,
494 		cpu_topology[cpuid].socket_id, mpidr);
495 }
496 
497 static inline int cpu_corepower_flags(void)
498 {
499 	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
500 }
501 
502 static struct sched_domain_topology_level arm_topology[] = {
503 #ifdef CONFIG_SCHED_MC
504 	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
505 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
506 #endif
507 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
508 	{ NULL, },
509 };
510 
511 /*
512  * init_cpu_topology is called at boot when only one cpu is running
513  * which prevent simultaneous write access to cpu_topology array
514  */
515 void __init init_cpu_topology(void)
516 {
517 	unsigned int cpu;
518 
519 	/* init core mask and capacity */
520 	for_each_possible_cpu(cpu) {
521 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
522 
523 		cpu_topo->thread_id = -1;
524 		cpu_topo->core_id =  -1;
525 		cpu_topo->socket_id = -1;
526 		cpumask_clear(&cpu_topo->core_sibling);
527 		cpumask_clear(&cpu_topo->thread_sibling);
528 	}
529 	smp_wmb();
530 
531 	parse_dt_topology();
532 
533 	/* Set scheduler topology descriptor */
534 	set_sched_topology(arm_topology);
535 }
536