1 /* 2 * arch/arm/kernel/topology.c 3 * 4 * Copyright (C) 2011 Linaro Limited. 5 * Written by: Vincent Guittot 6 * 7 * based on arch/sh/kernel/topology.c 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13 14 #include <linux/cpu.h> 15 #include <linux/cpufreq.h> 16 #include <linux/cpumask.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/percpu.h> 20 #include <linux/node.h> 21 #include <linux/nodemask.h> 22 #include <linux/of.h> 23 #include <linux/sched.h> 24 #include <linux/sched/topology.h> 25 #include <linux/slab.h> 26 #include <linux/string.h> 27 28 #include <asm/cpu.h> 29 #include <asm/cputype.h> 30 #include <asm/topology.h> 31 32 /* 33 * cpu capacity scale management 34 */ 35 36 /* 37 * cpu capacity table 38 * This per cpu data structure describes the relative capacity of each core. 39 * On a heteregenous system, cores don't have the same computation capacity 40 * and we reflect that difference in the cpu_capacity field so the scheduler 41 * can take this difference into account during load balance. A per cpu 42 * structure is preferred because each CPU updates its own cpu_capacity field 43 * during the load balance except for idle cores. One idle core is selected 44 * to run the rebalance_domains for all idle cores and the cpu_capacity can be 45 * updated during this sequence. 46 */ 47 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 48 static DEFINE_MUTEX(cpu_scale_mutex); 49 50 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 51 { 52 return per_cpu(cpu_scale, cpu); 53 } 54 55 static void set_capacity_scale(unsigned int cpu, unsigned long capacity) 56 { 57 per_cpu(cpu_scale, cpu) = capacity; 58 } 59 60 #ifdef CONFIG_PROC_SYSCTL 61 static ssize_t cpu_capacity_show(struct device *dev, 62 struct device_attribute *attr, 63 char *buf) 64 { 65 struct cpu *cpu = container_of(dev, struct cpu, dev); 66 67 return sprintf(buf, "%lu\n", 68 arch_scale_cpu_capacity(NULL, cpu->dev.id)); 69 } 70 71 static ssize_t cpu_capacity_store(struct device *dev, 72 struct device_attribute *attr, 73 const char *buf, 74 size_t count) 75 { 76 struct cpu *cpu = container_of(dev, struct cpu, dev); 77 int this_cpu = cpu->dev.id, i; 78 unsigned long new_capacity; 79 ssize_t ret; 80 81 if (count) { 82 ret = kstrtoul(buf, 0, &new_capacity); 83 if (ret) 84 return ret; 85 if (new_capacity > SCHED_CAPACITY_SCALE) 86 return -EINVAL; 87 88 mutex_lock(&cpu_scale_mutex); 89 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling) 90 set_capacity_scale(i, new_capacity); 91 mutex_unlock(&cpu_scale_mutex); 92 } 93 94 return count; 95 } 96 97 static DEVICE_ATTR_RW(cpu_capacity); 98 99 static int register_cpu_capacity_sysctl(void) 100 { 101 int i; 102 struct device *cpu; 103 104 for_each_possible_cpu(i) { 105 cpu = get_cpu_device(i); 106 if (!cpu) { 107 pr_err("%s: too early to get CPU%d device!\n", 108 __func__, i); 109 continue; 110 } 111 device_create_file(cpu, &dev_attr_cpu_capacity); 112 } 113 114 return 0; 115 } 116 subsys_initcall(register_cpu_capacity_sysctl); 117 #endif 118 119 #ifdef CONFIG_OF 120 struct cpu_efficiency { 121 const char *compatible; 122 unsigned long efficiency; 123 }; 124 125 /* 126 * Table of relative efficiency of each processors 127 * The efficiency value must fit in 20bit and the final 128 * cpu_scale value must be in the range 129 * 0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2 130 * in order to return at most 1 when DIV_ROUND_CLOSEST 131 * is used to compute the capacity of a CPU. 132 * Processors that are not defined in the table, 133 * use the default SCHED_CAPACITY_SCALE value for cpu_scale. 134 */ 135 static const struct cpu_efficiency table_efficiency[] = { 136 {"arm,cortex-a15", 3891}, 137 {"arm,cortex-a7", 2048}, 138 {NULL, }, 139 }; 140 141 static unsigned long *__cpu_capacity; 142 #define cpu_capacity(cpu) __cpu_capacity[cpu] 143 144 static unsigned long middle_capacity = 1; 145 static bool cap_from_dt = true; 146 static u32 *raw_capacity; 147 static bool cap_parsing_failed; 148 static u32 capacity_scale; 149 150 static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu) 151 { 152 int ret = 1; 153 u32 cpu_capacity; 154 155 if (cap_parsing_failed) 156 return !ret; 157 158 ret = of_property_read_u32(cpu_node, 159 "capacity-dmips-mhz", 160 &cpu_capacity); 161 if (!ret) { 162 if (!raw_capacity) { 163 raw_capacity = kcalloc(num_possible_cpus(), 164 sizeof(*raw_capacity), 165 GFP_KERNEL); 166 if (!raw_capacity) { 167 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n"); 168 cap_parsing_failed = true; 169 return !ret; 170 } 171 } 172 capacity_scale = max(cpu_capacity, capacity_scale); 173 raw_capacity[cpu] = cpu_capacity; 174 pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n", 175 cpu_node->full_name, raw_capacity[cpu]); 176 } else { 177 if (raw_capacity) { 178 pr_err("cpu_capacity: missing %s raw capacity\n", 179 cpu_node->full_name); 180 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 181 } 182 cap_parsing_failed = true; 183 kfree(raw_capacity); 184 } 185 186 return !ret; 187 } 188 189 static void normalize_cpu_capacity(void) 190 { 191 u64 capacity; 192 int cpu; 193 194 if (!raw_capacity || cap_parsing_failed) 195 return; 196 197 pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale); 198 mutex_lock(&cpu_scale_mutex); 199 for_each_possible_cpu(cpu) { 200 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT) 201 / capacity_scale; 202 set_capacity_scale(cpu, capacity); 203 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 204 cpu, arch_scale_cpu_capacity(NULL, cpu)); 205 } 206 mutex_unlock(&cpu_scale_mutex); 207 } 208 209 #ifdef CONFIG_CPU_FREQ 210 static cpumask_var_t cpus_to_visit; 211 static bool cap_parsing_done; 212 static void parsing_done_workfn(struct work_struct *work); 213 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 214 215 static int 216 init_cpu_capacity_callback(struct notifier_block *nb, 217 unsigned long val, 218 void *data) 219 { 220 struct cpufreq_policy *policy = data; 221 int cpu; 222 223 if (cap_parsing_failed || cap_parsing_done) 224 return 0; 225 226 switch (val) { 227 case CPUFREQ_NOTIFY: 228 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 229 cpumask_pr_args(policy->related_cpus), 230 cpumask_pr_args(cpus_to_visit)); 231 cpumask_andnot(cpus_to_visit, 232 cpus_to_visit, 233 policy->related_cpus); 234 for_each_cpu(cpu, policy->related_cpus) { 235 raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) * 236 policy->cpuinfo.max_freq / 1000UL; 237 capacity_scale = max(raw_capacity[cpu], capacity_scale); 238 } 239 if (cpumask_empty(cpus_to_visit)) { 240 normalize_cpu_capacity(); 241 kfree(raw_capacity); 242 pr_debug("cpu_capacity: parsing done\n"); 243 cap_parsing_done = true; 244 schedule_work(&parsing_done_work); 245 } 246 } 247 return 0; 248 } 249 250 static struct notifier_block init_cpu_capacity_notifier = { 251 .notifier_call = init_cpu_capacity_callback, 252 }; 253 254 static int __init register_cpufreq_notifier(void) 255 { 256 if (cap_parsing_failed) 257 return -EINVAL; 258 259 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) { 260 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n"); 261 return -ENOMEM; 262 } 263 cpumask_copy(cpus_to_visit, cpu_possible_mask); 264 265 return cpufreq_register_notifier(&init_cpu_capacity_notifier, 266 CPUFREQ_POLICY_NOTIFIER); 267 } 268 core_initcall(register_cpufreq_notifier); 269 270 static void parsing_done_workfn(struct work_struct *work) 271 { 272 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 273 CPUFREQ_POLICY_NOTIFIER); 274 } 275 276 #else 277 static int __init free_raw_capacity(void) 278 { 279 kfree(raw_capacity); 280 281 return 0; 282 } 283 core_initcall(free_raw_capacity); 284 #endif 285 286 /* 287 * Iterate all CPUs' descriptor in DT and compute the efficiency 288 * (as per table_efficiency). Also calculate a middle efficiency 289 * as close as possible to (max{eff_i} - min{eff_i}) / 2 290 * This is later used to scale the cpu_capacity field such that an 291 * 'average' CPU is of middle capacity. Also see the comments near 292 * table_efficiency[] and update_cpu_capacity(). 293 */ 294 static void __init parse_dt_topology(void) 295 { 296 const struct cpu_efficiency *cpu_eff; 297 struct device_node *cn = NULL; 298 unsigned long min_capacity = ULONG_MAX; 299 unsigned long max_capacity = 0; 300 unsigned long capacity = 0; 301 int cpu = 0; 302 303 __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), 304 GFP_NOWAIT); 305 306 cn = of_find_node_by_path("/cpus"); 307 if (!cn) { 308 pr_err("No CPU information found in DT\n"); 309 return; 310 } 311 312 for_each_possible_cpu(cpu) { 313 const u32 *rate; 314 int len; 315 316 /* too early to use cpu->of_node */ 317 cn = of_get_cpu_node(cpu, NULL); 318 if (!cn) { 319 pr_err("missing device node for CPU %d\n", cpu); 320 continue; 321 } 322 323 if (parse_cpu_capacity(cn, cpu)) { 324 of_node_put(cn); 325 continue; 326 } 327 328 cap_from_dt = false; 329 330 for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) 331 if (of_device_is_compatible(cn, cpu_eff->compatible)) 332 break; 333 334 if (cpu_eff->compatible == NULL) 335 continue; 336 337 rate = of_get_property(cn, "clock-frequency", &len); 338 if (!rate || len != 4) { 339 pr_err("%s missing clock-frequency property\n", 340 cn->full_name); 341 continue; 342 } 343 344 capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; 345 346 /* Save min capacity of the system */ 347 if (capacity < min_capacity) 348 min_capacity = capacity; 349 350 /* Save max capacity of the system */ 351 if (capacity > max_capacity) 352 max_capacity = capacity; 353 354 cpu_capacity(cpu) = capacity; 355 } 356 357 /* If min and max capacities are equals, we bypass the update of the 358 * cpu_scale because all CPUs have the same capacity. Otherwise, we 359 * compute a middle_capacity factor that will ensure that the capacity 360 * of an 'average' CPU of the system will be as close as possible to 361 * SCHED_CAPACITY_SCALE, which is the default value, but with the 362 * constraint explained near table_efficiency[]. 363 */ 364 if (4*max_capacity < (3*(max_capacity + min_capacity))) 365 middle_capacity = (min_capacity + max_capacity) 366 >> (SCHED_CAPACITY_SHIFT+1); 367 else 368 middle_capacity = ((max_capacity / 3) 369 >> (SCHED_CAPACITY_SHIFT-1)) + 1; 370 371 if (cap_from_dt && !cap_parsing_failed) 372 normalize_cpu_capacity(); 373 } 374 375 /* 376 * Look for a customed capacity of a CPU in the cpu_capacity table during the 377 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the 378 * function returns directly for SMP system. 379 */ 380 static void update_cpu_capacity(unsigned int cpu) 381 { 382 if (!cpu_capacity(cpu) || cap_from_dt) 383 return; 384 385 set_capacity_scale(cpu, cpu_capacity(cpu) / middle_capacity); 386 387 pr_info("CPU%u: update cpu_capacity %lu\n", 388 cpu, arch_scale_cpu_capacity(NULL, cpu)); 389 } 390 391 #else 392 static inline void parse_dt_topology(void) {} 393 static inline void update_cpu_capacity(unsigned int cpuid) {} 394 #endif 395 396 /* 397 * cpu topology table 398 */ 399 struct cputopo_arm cpu_topology[NR_CPUS]; 400 EXPORT_SYMBOL_GPL(cpu_topology); 401 402 const struct cpumask *cpu_coregroup_mask(int cpu) 403 { 404 return &cpu_topology[cpu].core_sibling; 405 } 406 407 /* 408 * The current assumption is that we can power gate each core independently. 409 * This will be superseded by DT binding once available. 410 */ 411 const struct cpumask *cpu_corepower_mask(int cpu) 412 { 413 return &cpu_topology[cpu].thread_sibling; 414 } 415 416 static void update_siblings_masks(unsigned int cpuid) 417 { 418 struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 419 int cpu; 420 421 /* update core and thread sibling masks */ 422 for_each_possible_cpu(cpu) { 423 cpu_topo = &cpu_topology[cpu]; 424 425 if (cpuid_topo->socket_id != cpu_topo->socket_id) 426 continue; 427 428 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 429 if (cpu != cpuid) 430 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 431 432 if (cpuid_topo->core_id != cpu_topo->core_id) 433 continue; 434 435 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 436 if (cpu != cpuid) 437 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 438 } 439 smp_wmb(); 440 } 441 442 /* 443 * store_cpu_topology is called at boot when only one cpu is running 444 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, 445 * which prevents simultaneous write access to cpu_topology array 446 */ 447 void store_cpu_topology(unsigned int cpuid) 448 { 449 struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; 450 unsigned int mpidr; 451 452 /* If the cpu topology has been already set, just return */ 453 if (cpuid_topo->core_id != -1) 454 return; 455 456 mpidr = read_cpuid_mpidr(); 457 458 /* create cpu topology mapping */ 459 if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { 460 /* 461 * This is a multiprocessor system 462 * multiprocessor format & multiprocessor mode field are set 463 */ 464 465 if (mpidr & MPIDR_MT_BITMASK) { 466 /* core performance interdependency */ 467 cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 468 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); 469 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2); 470 } else { 471 /* largely independent cores */ 472 cpuid_topo->thread_id = -1; 473 cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0); 474 cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1); 475 } 476 } else { 477 /* 478 * This is an uniprocessor system 479 * we are in multiprocessor format but uniprocessor system 480 * or in the old uniprocessor format 481 */ 482 cpuid_topo->thread_id = -1; 483 cpuid_topo->core_id = 0; 484 cpuid_topo->socket_id = -1; 485 } 486 487 update_siblings_masks(cpuid); 488 489 update_cpu_capacity(cpuid); 490 491 pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", 492 cpuid, cpu_topology[cpuid].thread_id, 493 cpu_topology[cpuid].core_id, 494 cpu_topology[cpuid].socket_id, mpidr); 495 } 496 497 static inline int cpu_corepower_flags(void) 498 { 499 return SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN; 500 } 501 502 static struct sched_domain_topology_level arm_topology[] = { 503 #ifdef CONFIG_SCHED_MC 504 { cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) }, 505 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, 506 #endif 507 { cpu_cpu_mask, SD_INIT_NAME(DIE) }, 508 { NULL, }, 509 }; 510 511 /* 512 * init_cpu_topology is called at boot when only one cpu is running 513 * which prevent simultaneous write access to cpu_topology array 514 */ 515 void __init init_cpu_topology(void) 516 { 517 unsigned int cpu; 518 519 /* init core mask and capacity */ 520 for_each_possible_cpu(cpu) { 521 struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); 522 523 cpu_topo->thread_id = -1; 524 cpu_topo->core_id = -1; 525 cpu_topo->socket_id = -1; 526 cpumask_clear(&cpu_topo->core_sibling); 527 cpumask_clear(&cpu_topo->thread_sibling); 528 } 529 smp_wmb(); 530 531 parse_dt_topology(); 532 533 /* Set scheduler topology descriptor */ 534 set_sched_topology(arm_topology); 535 } 536