xref: /openbmc/linux/arch/arm/kernel/topology.c (revision c67e8ec0)
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/arch_topology.h>
15 #include <linux/cpu.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpumask.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/node.h>
22 #include <linux/nodemask.h>
23 #include <linux/of.h>
24 #include <linux/sched.h>
25 #include <linux/sched/topology.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 
29 #include <asm/cpu.h>
30 #include <asm/cputype.h>
31 #include <asm/topology.h>
32 
33 /*
34  * cpu capacity scale management
35  */
36 
37 /*
38  * cpu capacity table
39  * This per cpu data structure describes the relative capacity of each core.
40  * On a heteregenous system, cores don't have the same computation capacity
41  * and we reflect that difference in the cpu_capacity field so the scheduler
42  * can take this difference into account during load balance. A per cpu
43  * structure is preferred because each CPU updates its own cpu_capacity field
44  * during the load balance except for idle cores. One idle core is selected
45  * to run the rebalance_domains for all idle cores and the cpu_capacity can be
46  * updated during this sequence.
47  */
48 
49 #ifdef CONFIG_OF
50 struct cpu_efficiency {
51 	const char *compatible;
52 	unsigned long efficiency;
53 };
54 
55 /*
56  * Table of relative efficiency of each processors
57  * The efficiency value must fit in 20bit and the final
58  * cpu_scale value must be in the range
59  *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
60  * in order to return at most 1 when DIV_ROUND_CLOSEST
61  * is used to compute the capacity of a CPU.
62  * Processors that are not defined in the table,
63  * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
64  */
65 static const struct cpu_efficiency table_efficiency[] = {
66 	{"arm,cortex-a15", 3891},
67 	{"arm,cortex-a7",  2048},
68 	{NULL, },
69 };
70 
71 static unsigned long *__cpu_capacity;
72 #define cpu_capacity(cpu)	__cpu_capacity[cpu]
73 
74 static unsigned long middle_capacity = 1;
75 static bool cap_from_dt = true;
76 
77 /*
78  * Iterate all CPUs' descriptor in DT and compute the efficiency
79  * (as per table_efficiency). Also calculate a middle efficiency
80  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
81  * This is later used to scale the cpu_capacity field such that an
82  * 'average' CPU is of middle capacity. Also see the comments near
83  * table_efficiency[] and update_cpu_capacity().
84  */
85 static void __init parse_dt_topology(void)
86 {
87 	const struct cpu_efficiency *cpu_eff;
88 	struct device_node *cn = NULL;
89 	unsigned long min_capacity = ULONG_MAX;
90 	unsigned long max_capacity = 0;
91 	unsigned long capacity = 0;
92 	int cpu = 0;
93 
94 	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
95 				 GFP_NOWAIT);
96 
97 	for_each_possible_cpu(cpu) {
98 		const u32 *rate;
99 		int len;
100 
101 		/* too early to use cpu->of_node */
102 		cn = of_get_cpu_node(cpu, NULL);
103 		if (!cn) {
104 			pr_err("missing device node for CPU %d\n", cpu);
105 			continue;
106 		}
107 
108 		if (topology_parse_cpu_capacity(cn, cpu)) {
109 			of_node_put(cn);
110 			continue;
111 		}
112 
113 		cap_from_dt = false;
114 
115 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
116 			if (of_device_is_compatible(cn, cpu_eff->compatible))
117 				break;
118 
119 		if (cpu_eff->compatible == NULL)
120 			continue;
121 
122 		rate = of_get_property(cn, "clock-frequency", &len);
123 		if (!rate || len != 4) {
124 			pr_err("%pOF missing clock-frequency property\n", cn);
125 			continue;
126 		}
127 
128 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
129 
130 		/* Save min capacity of the system */
131 		if (capacity < min_capacity)
132 			min_capacity = capacity;
133 
134 		/* Save max capacity of the system */
135 		if (capacity > max_capacity)
136 			max_capacity = capacity;
137 
138 		cpu_capacity(cpu) = capacity;
139 	}
140 
141 	/* If min and max capacities are equals, we bypass the update of the
142 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
143 	 * compute a middle_capacity factor that will ensure that the capacity
144 	 * of an 'average' CPU of the system will be as close as possible to
145 	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
146 	 * constraint explained near table_efficiency[].
147 	 */
148 	if (4*max_capacity < (3*(max_capacity + min_capacity)))
149 		middle_capacity = (min_capacity + max_capacity)
150 				>> (SCHED_CAPACITY_SHIFT+1);
151 	else
152 		middle_capacity = ((max_capacity / 3)
153 				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
154 
155 	if (cap_from_dt)
156 		topology_normalize_cpu_scale();
157 }
158 
159 /*
160  * Look for a customed capacity of a CPU in the cpu_capacity table during the
161  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
162  * function returns directly for SMP system.
163  */
164 static void update_cpu_capacity(unsigned int cpu)
165 {
166 	if (!cpu_capacity(cpu) || cap_from_dt)
167 		return;
168 
169 	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
170 
171 	pr_info("CPU%u: update cpu_capacity %lu\n",
172 		cpu, topology_get_cpu_scale(NULL, cpu));
173 }
174 
175 #else
176 static inline void parse_dt_topology(void) {}
177 static inline void update_cpu_capacity(unsigned int cpuid) {}
178 #endif
179 
180  /*
181  * cpu topology table
182  */
183 struct cputopo_arm cpu_topology[NR_CPUS];
184 EXPORT_SYMBOL_GPL(cpu_topology);
185 
186 const struct cpumask *cpu_coregroup_mask(int cpu)
187 {
188 	return &cpu_topology[cpu].core_sibling;
189 }
190 
191 /*
192  * The current assumption is that we can power gate each core independently.
193  * This will be superseded by DT binding once available.
194  */
195 const struct cpumask *cpu_corepower_mask(int cpu)
196 {
197 	return &cpu_topology[cpu].thread_sibling;
198 }
199 
200 static void update_siblings_masks(unsigned int cpuid)
201 {
202 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
203 	int cpu;
204 
205 	/* update core and thread sibling masks */
206 	for_each_possible_cpu(cpu) {
207 		cpu_topo = &cpu_topology[cpu];
208 
209 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
210 			continue;
211 
212 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
213 		if (cpu != cpuid)
214 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
215 
216 		if (cpuid_topo->core_id != cpu_topo->core_id)
217 			continue;
218 
219 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
220 		if (cpu != cpuid)
221 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
222 	}
223 	smp_wmb();
224 }
225 
226 /*
227  * store_cpu_topology is called at boot when only one cpu is running
228  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
229  * which prevents simultaneous write access to cpu_topology array
230  */
231 void store_cpu_topology(unsigned int cpuid)
232 {
233 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
234 	unsigned int mpidr;
235 
236 	/* If the cpu topology has been already set, just return */
237 	if (cpuid_topo->core_id != -1)
238 		return;
239 
240 	mpidr = read_cpuid_mpidr();
241 
242 	/* create cpu topology mapping */
243 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
244 		/*
245 		 * This is a multiprocessor system
246 		 * multiprocessor format & multiprocessor mode field are set
247 		 */
248 
249 		if (mpidr & MPIDR_MT_BITMASK) {
250 			/* core performance interdependency */
251 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
252 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
253 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
254 		} else {
255 			/* largely independent cores */
256 			cpuid_topo->thread_id = -1;
257 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
258 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
259 		}
260 	} else {
261 		/*
262 		 * This is an uniprocessor system
263 		 * we are in multiprocessor format but uniprocessor system
264 		 * or in the old uniprocessor format
265 		 */
266 		cpuid_topo->thread_id = -1;
267 		cpuid_topo->core_id = 0;
268 		cpuid_topo->socket_id = -1;
269 	}
270 
271 	update_siblings_masks(cpuid);
272 
273 	update_cpu_capacity(cpuid);
274 
275 	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
276 		cpuid, cpu_topology[cpuid].thread_id,
277 		cpu_topology[cpuid].core_id,
278 		cpu_topology[cpuid].socket_id, mpidr);
279 }
280 
281 static inline int cpu_corepower_flags(void)
282 {
283 	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
284 }
285 
286 static struct sched_domain_topology_level arm_topology[] = {
287 #ifdef CONFIG_SCHED_MC
288 	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
289 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
290 #endif
291 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
292 	{ NULL, },
293 };
294 
295 /*
296  * init_cpu_topology is called at boot when only one cpu is running
297  * which prevent simultaneous write access to cpu_topology array
298  */
299 void __init init_cpu_topology(void)
300 {
301 	unsigned int cpu;
302 
303 	/* init core mask and capacity */
304 	for_each_possible_cpu(cpu) {
305 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
306 
307 		cpu_topo->thread_id = -1;
308 		cpu_topo->core_id =  -1;
309 		cpu_topo->socket_id = -1;
310 		cpumask_clear(&cpu_topo->core_sibling);
311 		cpumask_clear(&cpu_topo->thread_sibling);
312 	}
313 	smp_wmb();
314 
315 	parse_dt_topology();
316 
317 	/* Set scheduler topology descriptor */
318 	set_sched_topology(arm_topology);
319 }
320