xref: /openbmc/linux/arch/arm/kernel/topology.c (revision ba61bb17)
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/arch_topology.h>
15 #include <linux/cpu.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpumask.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/node.h>
22 #include <linux/nodemask.h>
23 #include <linux/of.h>
24 #include <linux/sched.h>
25 #include <linux/sched/topology.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 
29 #include <asm/cpu.h>
30 #include <asm/cputype.h>
31 #include <asm/topology.h>
32 
33 /*
34  * cpu capacity scale management
35  */
36 
37 /*
38  * cpu capacity table
39  * This per cpu data structure describes the relative capacity of each core.
40  * On a heteregenous system, cores don't have the same computation capacity
41  * and we reflect that difference in the cpu_capacity field so the scheduler
42  * can take this difference into account during load balance. A per cpu
43  * structure is preferred because each CPU updates its own cpu_capacity field
44  * during the load balance except for idle cores. One idle core is selected
45  * to run the rebalance_domains for all idle cores and the cpu_capacity can be
46  * updated during this sequence.
47  */
48 
49 #ifdef CONFIG_OF
50 struct cpu_efficiency {
51 	const char *compatible;
52 	unsigned long efficiency;
53 };
54 
55 /*
56  * Table of relative efficiency of each processors
57  * The efficiency value must fit in 20bit and the final
58  * cpu_scale value must be in the range
59  *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
60  * in order to return at most 1 when DIV_ROUND_CLOSEST
61  * is used to compute the capacity of a CPU.
62  * Processors that are not defined in the table,
63  * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
64  */
65 static const struct cpu_efficiency table_efficiency[] = {
66 	{"arm,cortex-a15", 3891},
67 	{"arm,cortex-a7",  2048},
68 	{NULL, },
69 };
70 
71 static unsigned long *__cpu_capacity;
72 #define cpu_capacity(cpu)	__cpu_capacity[cpu]
73 
74 static unsigned long middle_capacity = 1;
75 static bool cap_from_dt = true;
76 
77 /*
78  * Iterate all CPUs' descriptor in DT and compute the efficiency
79  * (as per table_efficiency). Also calculate a middle efficiency
80  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
81  * This is later used to scale the cpu_capacity field such that an
82  * 'average' CPU is of middle capacity. Also see the comments near
83  * table_efficiency[] and update_cpu_capacity().
84  */
85 static void __init parse_dt_topology(void)
86 {
87 	const struct cpu_efficiency *cpu_eff;
88 	struct device_node *cn = NULL;
89 	unsigned long min_capacity = ULONG_MAX;
90 	unsigned long max_capacity = 0;
91 	unsigned long capacity = 0;
92 	int cpu = 0;
93 
94 	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
95 				 GFP_NOWAIT);
96 
97 	cn = of_find_node_by_path("/cpus");
98 	if (!cn) {
99 		pr_err("No CPU information found in DT\n");
100 		return;
101 	}
102 
103 	for_each_possible_cpu(cpu) {
104 		const u32 *rate;
105 		int len;
106 
107 		/* too early to use cpu->of_node */
108 		cn = of_get_cpu_node(cpu, NULL);
109 		if (!cn) {
110 			pr_err("missing device node for CPU %d\n", cpu);
111 			continue;
112 		}
113 
114 		if (topology_parse_cpu_capacity(cn, cpu)) {
115 			of_node_put(cn);
116 			continue;
117 		}
118 
119 		cap_from_dt = false;
120 
121 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
122 			if (of_device_is_compatible(cn, cpu_eff->compatible))
123 				break;
124 
125 		if (cpu_eff->compatible == NULL)
126 			continue;
127 
128 		rate = of_get_property(cn, "clock-frequency", &len);
129 		if (!rate || len != 4) {
130 			pr_err("%pOF missing clock-frequency property\n", cn);
131 			continue;
132 		}
133 
134 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
135 
136 		/* Save min capacity of the system */
137 		if (capacity < min_capacity)
138 			min_capacity = capacity;
139 
140 		/* Save max capacity of the system */
141 		if (capacity > max_capacity)
142 			max_capacity = capacity;
143 
144 		cpu_capacity(cpu) = capacity;
145 	}
146 
147 	/* If min and max capacities are equals, we bypass the update of the
148 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
149 	 * compute a middle_capacity factor that will ensure that the capacity
150 	 * of an 'average' CPU of the system will be as close as possible to
151 	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
152 	 * constraint explained near table_efficiency[].
153 	 */
154 	if (4*max_capacity < (3*(max_capacity + min_capacity)))
155 		middle_capacity = (min_capacity + max_capacity)
156 				>> (SCHED_CAPACITY_SHIFT+1);
157 	else
158 		middle_capacity = ((max_capacity / 3)
159 				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
160 
161 	if (cap_from_dt)
162 		topology_normalize_cpu_scale();
163 }
164 
165 /*
166  * Look for a customed capacity of a CPU in the cpu_capacity table during the
167  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
168  * function returns directly for SMP system.
169  */
170 static void update_cpu_capacity(unsigned int cpu)
171 {
172 	if (!cpu_capacity(cpu) || cap_from_dt)
173 		return;
174 
175 	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
176 
177 	pr_info("CPU%u: update cpu_capacity %lu\n",
178 		cpu, topology_get_cpu_scale(NULL, cpu));
179 }
180 
181 #else
182 static inline void parse_dt_topology(void) {}
183 static inline void update_cpu_capacity(unsigned int cpuid) {}
184 #endif
185 
186  /*
187  * cpu topology table
188  */
189 struct cputopo_arm cpu_topology[NR_CPUS];
190 EXPORT_SYMBOL_GPL(cpu_topology);
191 
192 const struct cpumask *cpu_coregroup_mask(int cpu)
193 {
194 	return &cpu_topology[cpu].core_sibling;
195 }
196 
197 /*
198  * The current assumption is that we can power gate each core independently.
199  * This will be superseded by DT binding once available.
200  */
201 const struct cpumask *cpu_corepower_mask(int cpu)
202 {
203 	return &cpu_topology[cpu].thread_sibling;
204 }
205 
206 static void update_siblings_masks(unsigned int cpuid)
207 {
208 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
209 	int cpu;
210 
211 	/* update core and thread sibling masks */
212 	for_each_possible_cpu(cpu) {
213 		cpu_topo = &cpu_topology[cpu];
214 
215 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
216 			continue;
217 
218 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
219 		if (cpu != cpuid)
220 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
221 
222 		if (cpuid_topo->core_id != cpu_topo->core_id)
223 			continue;
224 
225 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
226 		if (cpu != cpuid)
227 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
228 	}
229 	smp_wmb();
230 }
231 
232 /*
233  * store_cpu_topology is called at boot when only one cpu is running
234  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
235  * which prevents simultaneous write access to cpu_topology array
236  */
237 void store_cpu_topology(unsigned int cpuid)
238 {
239 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
240 	unsigned int mpidr;
241 
242 	/* If the cpu topology has been already set, just return */
243 	if (cpuid_topo->core_id != -1)
244 		return;
245 
246 	mpidr = read_cpuid_mpidr();
247 
248 	/* create cpu topology mapping */
249 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
250 		/*
251 		 * This is a multiprocessor system
252 		 * multiprocessor format & multiprocessor mode field are set
253 		 */
254 
255 		if (mpidr & MPIDR_MT_BITMASK) {
256 			/* core performance interdependency */
257 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
258 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
259 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
260 		} else {
261 			/* largely independent cores */
262 			cpuid_topo->thread_id = -1;
263 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
264 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
265 		}
266 	} else {
267 		/*
268 		 * This is an uniprocessor system
269 		 * we are in multiprocessor format but uniprocessor system
270 		 * or in the old uniprocessor format
271 		 */
272 		cpuid_topo->thread_id = -1;
273 		cpuid_topo->core_id = 0;
274 		cpuid_topo->socket_id = -1;
275 	}
276 
277 	update_siblings_masks(cpuid);
278 
279 	update_cpu_capacity(cpuid);
280 
281 	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
282 		cpuid, cpu_topology[cpuid].thread_id,
283 		cpu_topology[cpuid].core_id,
284 		cpu_topology[cpuid].socket_id, mpidr);
285 }
286 
287 static inline int cpu_corepower_flags(void)
288 {
289 	return SD_SHARE_PKG_RESOURCES  | SD_SHARE_POWERDOMAIN;
290 }
291 
292 static struct sched_domain_topology_level arm_topology[] = {
293 #ifdef CONFIG_SCHED_MC
294 	{ cpu_corepower_mask, cpu_corepower_flags, SD_INIT_NAME(GMC) },
295 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
296 #endif
297 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
298 	{ NULL, },
299 };
300 
301 /*
302  * init_cpu_topology is called at boot when only one cpu is running
303  * which prevent simultaneous write access to cpu_topology array
304  */
305 void __init init_cpu_topology(void)
306 {
307 	unsigned int cpu;
308 
309 	/* init core mask and capacity */
310 	for_each_possible_cpu(cpu) {
311 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
312 
313 		cpu_topo->thread_id = -1;
314 		cpu_topo->core_id =  -1;
315 		cpu_topo->socket_id = -1;
316 		cpumask_clear(&cpu_topo->core_sibling);
317 		cpumask_clear(&cpu_topo->thread_sibling);
318 	}
319 	smp_wmb();
320 
321 	parse_dt_topology();
322 
323 	/* Set scheduler topology descriptor */
324 	set_sched_topology(arm_topology);
325 }
326