xref: /openbmc/linux/arch/arm/kernel/time.c (revision 64c70b1c)
1 /*
2  *  linux/arch/arm/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5  *  Modifications for ARM (C) 1994-2001 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  *  This file contains the ARM-specific time handling details:
12  *  reading the RTC at bootup, etc...
13  *
14  *  1994-07-02  Alan Modra
15  *              fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
16  *  1998-12-20  Updated NTP code according to technical memorandum Jan '96
17  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
18  */
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/timex.h>
26 #include <linux/errno.h>
27 #include <linux/profile.h>
28 #include <linux/sysdev.h>
29 #include <linux/timer.h>
30 #include <linux/irq.h>
31 
32 #include <linux/mc146818rtc.h>
33 
34 #include <asm/leds.h>
35 #include <asm/thread_info.h>
36 #include <asm/mach/time.h>
37 
38 /*
39  * Our system timer.
40  */
41 struct sys_timer *system_timer;
42 
43 #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE)
44 /* this needs a better home */
45 DEFINE_SPINLOCK(rtc_lock);
46 
47 #ifdef CONFIG_RTC_DRV_CMOS_MODULE
48 EXPORT_SYMBOL(rtc_lock);
49 #endif
50 #endif	/* pc-style 'CMOS' RTC support */
51 
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY	(1000000/HZ)
54 
55 #ifdef CONFIG_SMP
56 unsigned long profile_pc(struct pt_regs *regs)
57 {
58 	unsigned long fp, pc = instruction_pointer(regs);
59 
60 	if (in_lock_functions(pc)) {
61 		fp = regs->ARM_fp;
62 		pc = pc_pointer(((unsigned long *)fp)[-1]);
63 	}
64 
65 	return pc;
66 }
67 EXPORT_SYMBOL(profile_pc);
68 #endif
69 
70 /*
71  * hook for setting the RTC's idea of the current time.
72  */
73 int (*set_rtc)(void);
74 
75 #ifndef CONFIG_GENERIC_TIME
76 static unsigned long dummy_gettimeoffset(void)
77 {
78 	return 0;
79 }
80 #endif
81 
82 /*
83  * An implementation of printk_clock() independent from
84  * sched_clock().  This avoids non-bootable kernels when
85  * printk_clock is enabled.
86  */
87 unsigned long long printk_clock(void)
88 {
89 	return (unsigned long long)(jiffies - INITIAL_JIFFIES) *
90 			(1000000000 / HZ);
91 }
92 
93 static unsigned long next_rtc_update;
94 
95 /*
96  * If we have an externally synchronized linux clock, then update
97  * CMOS clock accordingly every ~11 minutes.  set_rtc() has to be
98  * called as close as possible to 500 ms before the new second
99  * starts.
100  */
101 static inline void do_set_rtc(void)
102 {
103 	if (!ntp_synced() || set_rtc == NULL)
104 		return;
105 
106 	if (next_rtc_update &&
107 	    time_before((unsigned long)xtime.tv_sec, next_rtc_update))
108 		return;
109 
110 	if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
111 	    xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
112 		return;
113 
114 	if (set_rtc())
115 		/*
116 		 * rtc update failed.  Try again in 60s
117 		 */
118 		next_rtc_update = xtime.tv_sec + 60;
119 	else
120 		next_rtc_update = xtime.tv_sec + 660;
121 }
122 
123 #ifdef CONFIG_LEDS
124 
125 static void dummy_leds_event(led_event_t evt)
126 {
127 }
128 
129 void (*leds_event)(led_event_t) = dummy_leds_event;
130 
131 struct leds_evt_name {
132 	const char	name[8];
133 	int		on;
134 	int		off;
135 };
136 
137 static const struct leds_evt_name evt_names[] = {
138 	{ "amber", led_amber_on, led_amber_off },
139 	{ "blue",  led_blue_on,  led_blue_off  },
140 	{ "green", led_green_on, led_green_off },
141 	{ "red",   led_red_on,   led_red_off   },
142 };
143 
144 static ssize_t leds_store(struct sys_device *dev, const char *buf, size_t size)
145 {
146 	int ret = -EINVAL, len = strcspn(buf, " ");
147 
148 	if (len > 0 && buf[len] == '\0')
149 		len--;
150 
151 	if (strncmp(buf, "claim", len) == 0) {
152 		leds_event(led_claim);
153 		ret = size;
154 	} else if (strncmp(buf, "release", len) == 0) {
155 		leds_event(led_release);
156 		ret = size;
157 	} else {
158 		int i;
159 
160 		for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
161 			if (strlen(evt_names[i].name) != len ||
162 			    strncmp(buf, evt_names[i].name, len) != 0)
163 				continue;
164 			if (strncmp(buf+len, " on", 3) == 0) {
165 				leds_event(evt_names[i].on);
166 				ret = size;
167 			} else if (strncmp(buf+len, " off", 4) == 0) {
168 				leds_event(evt_names[i].off);
169 				ret = size;
170 			}
171 			break;
172 		}
173 	}
174 	return ret;
175 }
176 
177 static SYSDEV_ATTR(event, 0200, NULL, leds_store);
178 
179 static int leds_suspend(struct sys_device *dev, pm_message_t state)
180 {
181 	leds_event(led_stop);
182 	return 0;
183 }
184 
185 static int leds_resume(struct sys_device *dev)
186 {
187 	leds_event(led_start);
188 	return 0;
189 }
190 
191 static int leds_shutdown(struct sys_device *dev)
192 {
193 	leds_event(led_halted);
194 	return 0;
195 }
196 
197 static struct sysdev_class leds_sysclass = {
198 	set_kset_name("leds"),
199 	.shutdown	= leds_shutdown,
200 	.suspend	= leds_suspend,
201 	.resume		= leds_resume,
202 };
203 
204 static struct sys_device leds_device = {
205 	.id		= 0,
206 	.cls		= &leds_sysclass,
207 };
208 
209 static int __init leds_init(void)
210 {
211 	int ret;
212 	ret = sysdev_class_register(&leds_sysclass);
213 	if (ret == 0)
214 		ret = sysdev_register(&leds_device);
215 	if (ret == 0)
216 		ret = sysdev_create_file(&leds_device, &attr_event);
217 	return ret;
218 }
219 
220 device_initcall(leds_init);
221 
222 EXPORT_SYMBOL(leds_event);
223 #endif
224 
225 #ifdef CONFIG_LEDS_TIMER
226 static inline void do_leds(void)
227 {
228 	static unsigned int count = HZ/2;
229 
230 	if (--count == 0) {
231 		count = HZ/2;
232 		leds_event(led_timer);
233 	}
234 }
235 #else
236 #define	do_leds()
237 #endif
238 
239 #ifndef CONFIG_GENERIC_TIME
240 void do_gettimeofday(struct timeval *tv)
241 {
242 	unsigned long flags;
243 	unsigned long seq;
244 	unsigned long usec, sec;
245 
246 	do {
247 		seq = read_seqbegin_irqsave(&xtime_lock, flags);
248 		usec = system_timer->offset();
249 		sec = xtime.tv_sec;
250 		usec += xtime.tv_nsec / 1000;
251 	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
252 
253 	/* usec may have gone up a lot: be safe */
254 	while (usec >= 1000000) {
255 		usec -= 1000000;
256 		sec++;
257 	}
258 
259 	tv->tv_sec = sec;
260 	tv->tv_usec = usec;
261 }
262 
263 EXPORT_SYMBOL(do_gettimeofday);
264 
265 int do_settimeofday(struct timespec *tv)
266 {
267 	time_t wtm_sec, sec = tv->tv_sec;
268 	long wtm_nsec, nsec = tv->tv_nsec;
269 
270 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
271 		return -EINVAL;
272 
273 	write_seqlock_irq(&xtime_lock);
274 	/*
275 	 * This is revolting. We need to set "xtime" correctly. However, the
276 	 * value in this location is the value at the most recent update of
277 	 * wall time.  Discover what correction gettimeofday() would have
278 	 * done, and then undo it!
279 	 */
280 	nsec -= system_timer->offset() * NSEC_PER_USEC;
281 
282 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
283 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
284 
285 	set_normalized_timespec(&xtime, sec, nsec);
286 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
287 
288 	ntp_clear();
289 	write_sequnlock_irq(&xtime_lock);
290 	clock_was_set();
291 	return 0;
292 }
293 
294 EXPORT_SYMBOL(do_settimeofday);
295 #endif /* !CONFIG_GENERIC_TIME */
296 
297 /**
298  * save_time_delta - Save the offset between system time and RTC time
299  * @delta: pointer to timespec to store delta
300  * @rtc: pointer to timespec for current RTC time
301  *
302  * Return a delta between the system time and the RTC time, such
303  * that system time can be restored later with restore_time_delta()
304  */
305 void save_time_delta(struct timespec *delta, struct timespec *rtc)
306 {
307 	set_normalized_timespec(delta,
308 				xtime.tv_sec - rtc->tv_sec,
309 				xtime.tv_nsec - rtc->tv_nsec);
310 }
311 EXPORT_SYMBOL(save_time_delta);
312 
313 /**
314  * restore_time_delta - Restore the current system time
315  * @delta: delta returned by save_time_delta()
316  * @rtc: pointer to timespec for current RTC time
317  */
318 void restore_time_delta(struct timespec *delta, struct timespec *rtc)
319 {
320 	struct timespec ts;
321 
322 	set_normalized_timespec(&ts,
323 				delta->tv_sec + rtc->tv_sec,
324 				delta->tv_nsec + rtc->tv_nsec);
325 
326 	do_settimeofday(&ts);
327 }
328 EXPORT_SYMBOL(restore_time_delta);
329 
330 #ifndef CONFIG_GENERIC_CLOCKEVENTS
331 /*
332  * Kernel system timer support.
333  */
334 void timer_tick(void)
335 {
336 	profile_tick(CPU_PROFILING);
337 	do_leds();
338 	do_set_rtc();
339 	do_timer(1);
340 #ifndef CONFIG_SMP
341 	update_process_times(user_mode(get_irq_regs()));
342 #endif
343 }
344 #endif
345 
346 #if defined(CONFIG_PM) && !defined(CONFIG_GENERIC_CLOCKEVENTS)
347 static int timer_suspend(struct sys_device *dev, pm_message_t state)
348 {
349 	struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
350 
351 	if (timer->suspend != NULL)
352 		timer->suspend();
353 
354 	return 0;
355 }
356 
357 static int timer_resume(struct sys_device *dev)
358 {
359 	struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
360 
361 	if (timer->resume != NULL)
362 		timer->resume();
363 
364 	return 0;
365 }
366 #else
367 #define timer_suspend NULL
368 #define timer_resume NULL
369 #endif
370 
371 static struct sysdev_class timer_sysclass = {
372 	set_kset_name("timer"),
373 	.suspend	= timer_suspend,
374 	.resume		= timer_resume,
375 };
376 
377 #ifdef CONFIG_NO_IDLE_HZ
378 static int timer_dyn_tick_enable(void)
379 {
380 	struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
381 	unsigned long flags;
382 	int ret = -ENODEV;
383 
384 	if (dyn_tick) {
385 		spin_lock_irqsave(&dyn_tick->lock, flags);
386 		ret = 0;
387 		if (!(dyn_tick->state & DYN_TICK_ENABLED)) {
388 			ret = dyn_tick->enable();
389 
390 			if (ret == 0)
391 				dyn_tick->state |= DYN_TICK_ENABLED;
392 		}
393 		spin_unlock_irqrestore(&dyn_tick->lock, flags);
394 	}
395 
396 	return ret;
397 }
398 
399 static int timer_dyn_tick_disable(void)
400 {
401 	struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
402 	unsigned long flags;
403 	int ret = -ENODEV;
404 
405 	if (dyn_tick) {
406 		spin_lock_irqsave(&dyn_tick->lock, flags);
407 		ret = 0;
408 		if (dyn_tick->state & DYN_TICK_ENABLED) {
409 			ret = dyn_tick->disable();
410 
411 			if (ret == 0)
412 				dyn_tick->state &= ~DYN_TICK_ENABLED;
413 		}
414 		spin_unlock_irqrestore(&dyn_tick->lock, flags);
415 	}
416 
417 	return ret;
418 }
419 
420 /*
421  * Reprogram the system timer for at least the calculated time interval.
422  * This function should be called from the idle thread with IRQs disabled,
423  * immediately before sleeping.
424  */
425 void timer_dyn_reprogram(void)
426 {
427 	struct dyn_tick_timer *dyn_tick = system_timer->dyn_tick;
428 	unsigned long next, seq, flags;
429 
430 	if (!dyn_tick)
431 		return;
432 
433 	spin_lock_irqsave(&dyn_tick->lock, flags);
434 	if (dyn_tick->state & DYN_TICK_ENABLED) {
435 		next = next_timer_interrupt();
436 		do {
437 			seq = read_seqbegin(&xtime_lock);
438 			dyn_tick->reprogram(next - jiffies);
439 		} while (read_seqretry(&xtime_lock, seq));
440 	}
441 	spin_unlock_irqrestore(&dyn_tick->lock, flags);
442 }
443 
444 static ssize_t timer_show_dyn_tick(struct sys_device *dev, char *buf)
445 {
446 	return sprintf(buf, "%i\n",
447 		       (system_timer->dyn_tick->state & DYN_TICK_ENABLED) >> 1);
448 }
449 
450 static ssize_t timer_set_dyn_tick(struct sys_device *dev, const char *buf,
451 				  size_t count)
452 {
453 	unsigned int enable = simple_strtoul(buf, NULL, 2);
454 
455 	if (enable)
456 		timer_dyn_tick_enable();
457 	else
458 		timer_dyn_tick_disable();
459 
460 	return count;
461 }
462 static SYSDEV_ATTR(dyn_tick, 0644, timer_show_dyn_tick, timer_set_dyn_tick);
463 
464 /*
465  * dyntick=enable|disable
466  */
467 static char dyntick_str[4] __initdata = "";
468 
469 static int __init dyntick_setup(char *str)
470 {
471 	if (str)
472 		strlcpy(dyntick_str, str, sizeof(dyntick_str));
473 	return 1;
474 }
475 
476 __setup("dyntick=", dyntick_setup);
477 #endif
478 
479 static int __init timer_init_sysfs(void)
480 {
481 	int ret = sysdev_class_register(&timer_sysclass);
482 	if (ret == 0) {
483 		system_timer->dev.cls = &timer_sysclass;
484 		ret = sysdev_register(&system_timer->dev);
485 	}
486 
487 #ifdef CONFIG_NO_IDLE_HZ
488 	if (ret == 0 && system_timer->dyn_tick) {
489 		ret = sysdev_create_file(&system_timer->dev, &attr_dyn_tick);
490 
491 		/*
492 		 * Turn on dynamic tick after calibrate delay
493 		 * for correct bogomips
494 		 */
495 		if (ret == 0 && dyntick_str[0] == 'e')
496 			ret = timer_dyn_tick_enable();
497 	}
498 #endif
499 
500 	return ret;
501 }
502 
503 device_initcall(timer_init_sysfs);
504 
505 void __init time_init(void)
506 {
507 #ifndef CONFIG_GENERIC_TIME
508 	if (system_timer->offset == NULL)
509 		system_timer->offset = dummy_gettimeoffset;
510 #endif
511 	system_timer->init();
512 
513 #ifdef CONFIG_NO_IDLE_HZ
514 	if (system_timer->dyn_tick)
515 		spin_lock_init(&system_timer->dyn_tick->lock);
516 #endif
517 }
518 
519