xref: /openbmc/linux/arch/arm/kernel/smp.c (revision fd589a8f)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 
28 #include <asm/atomic.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/pgalloc.h>
35 #include <asm/processor.h>
36 #include <asm/tlbflush.h>
37 #include <asm/ptrace.h>
38 #include <asm/localtimer.h>
39 
40 /*
41  * as from 2.5, kernels no longer have an init_tasks structure
42  * so we need some other way of telling a new secondary core
43  * where to place its SVC stack
44  */
45 struct secondary_data secondary_data;
46 
47 /*
48  * structures for inter-processor calls
49  * - A collection of single bit ipi messages.
50  */
51 struct ipi_data {
52 	spinlock_t lock;
53 	unsigned long ipi_count;
54 	unsigned long bits;
55 };
56 
57 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
58 	.lock	= SPIN_LOCK_UNLOCKED,
59 };
60 
61 enum ipi_msg_type {
62 	IPI_TIMER,
63 	IPI_RESCHEDULE,
64 	IPI_CALL_FUNC,
65 	IPI_CALL_FUNC_SINGLE,
66 	IPI_CPU_STOP,
67 };
68 
69 int __cpuinit __cpu_up(unsigned int cpu)
70 {
71 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
72 	struct task_struct *idle = ci->idle;
73 	pgd_t *pgd;
74 	pmd_t *pmd;
75 	int ret;
76 
77 	/*
78 	 * Spawn a new process manually, if not already done.
79 	 * Grab a pointer to its task struct so we can mess with it
80 	 */
81 	if (!idle) {
82 		idle = fork_idle(cpu);
83 		if (IS_ERR(idle)) {
84 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
85 			return PTR_ERR(idle);
86 		}
87 		ci->idle = idle;
88 	}
89 
90 	/*
91 	 * Allocate initial page tables to allow the new CPU to
92 	 * enable the MMU safely.  This essentially means a set
93 	 * of our "standard" page tables, with the addition of
94 	 * a 1:1 mapping for the physical address of the kernel.
95 	 */
96 	pgd = pgd_alloc(&init_mm);
97 	pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
98 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
99 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
100 	flush_pmd_entry(pmd);
101 
102 	/*
103 	 * We need to tell the secondary core where to find
104 	 * its stack and the page tables.
105 	 */
106 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
107 	secondary_data.pgdir = virt_to_phys(pgd);
108 	wmb();
109 
110 	/*
111 	 * Now bring the CPU into our world.
112 	 */
113 	ret = boot_secondary(cpu, idle);
114 	if (ret == 0) {
115 		unsigned long timeout;
116 
117 		/*
118 		 * CPU was successfully started, wait for it
119 		 * to come online or time out.
120 		 */
121 		timeout = jiffies + HZ;
122 		while (time_before(jiffies, timeout)) {
123 			if (cpu_online(cpu))
124 				break;
125 
126 			udelay(10);
127 			barrier();
128 		}
129 
130 		if (!cpu_online(cpu))
131 			ret = -EIO;
132 	}
133 
134 	secondary_data.stack = NULL;
135 	secondary_data.pgdir = 0;
136 
137 	*pmd = __pmd(0);
138 	clean_pmd_entry(pmd);
139 	pgd_free(&init_mm, pgd);
140 
141 	if (ret) {
142 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
143 
144 		/*
145 		 * FIXME: We need to clean up the new idle thread. --rmk
146 		 */
147 	}
148 
149 	return ret;
150 }
151 
152 #ifdef CONFIG_HOTPLUG_CPU
153 /*
154  * __cpu_disable runs on the processor to be shutdown.
155  */
156 int __cpuexit __cpu_disable(void)
157 {
158 	unsigned int cpu = smp_processor_id();
159 	struct task_struct *p;
160 	int ret;
161 
162 	ret = mach_cpu_disable(cpu);
163 	if (ret)
164 		return ret;
165 
166 	/*
167 	 * Take this CPU offline.  Once we clear this, we can't return,
168 	 * and we must not schedule until we're ready to give up the cpu.
169 	 */
170 	set_cpu_online(cpu, false);
171 
172 	/*
173 	 * OK - migrate IRQs away from this CPU
174 	 */
175 	migrate_irqs();
176 
177 	/*
178 	 * Stop the local timer for this CPU.
179 	 */
180 	local_timer_stop();
181 
182 	/*
183 	 * Flush user cache and TLB mappings, and then remove this CPU
184 	 * from the vm mask set of all processes.
185 	 */
186 	flush_cache_all();
187 	local_flush_tlb_all();
188 
189 	read_lock(&tasklist_lock);
190 	for_each_process(p) {
191 		if (p->mm)
192 			cpu_clear(cpu, p->mm->cpu_vm_mask);
193 	}
194 	read_unlock(&tasklist_lock);
195 
196 	return 0;
197 }
198 
199 /*
200  * called on the thread which is asking for a CPU to be shutdown -
201  * waits until shutdown has completed, or it is timed out.
202  */
203 void __cpuexit __cpu_die(unsigned int cpu)
204 {
205 	if (!platform_cpu_kill(cpu))
206 		printk("CPU%u: unable to kill\n", cpu);
207 }
208 
209 /*
210  * Called from the idle thread for the CPU which has been shutdown.
211  *
212  * Note that we disable IRQs here, but do not re-enable them
213  * before returning to the caller. This is also the behaviour
214  * of the other hotplug-cpu capable cores, so presumably coming
215  * out of idle fixes this.
216  */
217 void __cpuexit cpu_die(void)
218 {
219 	unsigned int cpu = smp_processor_id();
220 
221 	local_irq_disable();
222 	idle_task_exit();
223 
224 	/*
225 	 * actual CPU shutdown procedure is at least platform (if not
226 	 * CPU) specific
227 	 */
228 	platform_cpu_die(cpu);
229 
230 	/*
231 	 * Do not return to the idle loop - jump back to the secondary
232 	 * cpu initialisation.  There's some initialisation which needs
233 	 * to be repeated to undo the effects of taking the CPU offline.
234 	 */
235 	__asm__("mov	sp, %0\n"
236 	"	b	secondary_start_kernel"
237 		:
238 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
239 }
240 #endif /* CONFIG_HOTPLUG_CPU */
241 
242 /*
243  * This is the secondary CPU boot entry.  We're using this CPUs
244  * idle thread stack, but a set of temporary page tables.
245  */
246 asmlinkage void __cpuinit secondary_start_kernel(void)
247 {
248 	struct mm_struct *mm = &init_mm;
249 	unsigned int cpu = smp_processor_id();
250 
251 	printk("CPU%u: Booted secondary processor\n", cpu);
252 
253 	/*
254 	 * All kernel threads share the same mm context; grab a
255 	 * reference and switch to it.
256 	 */
257 	atomic_inc(&mm->mm_users);
258 	atomic_inc(&mm->mm_count);
259 	current->active_mm = mm;
260 	cpu_set(cpu, mm->cpu_vm_mask);
261 	cpu_switch_mm(mm->pgd, mm);
262 	enter_lazy_tlb(mm, current);
263 	local_flush_tlb_all();
264 
265 	cpu_init();
266 	preempt_disable();
267 
268 	/*
269 	 * Give the platform a chance to do its own initialisation.
270 	 */
271 	platform_secondary_init(cpu);
272 
273 	/*
274 	 * Enable local interrupts.
275 	 */
276 	notify_cpu_starting(cpu);
277 	local_irq_enable();
278 	local_fiq_enable();
279 
280 	/*
281 	 * Setup the percpu timer for this CPU.
282 	 */
283 	percpu_timer_setup();
284 
285 	calibrate_delay();
286 
287 	smp_store_cpu_info(cpu);
288 
289 	/*
290 	 * OK, now it's safe to let the boot CPU continue
291 	 */
292 	set_cpu_online(cpu, true);
293 
294 	/*
295 	 * OK, it's off to the idle thread for us
296 	 */
297 	cpu_idle();
298 }
299 
300 /*
301  * Called by both boot and secondaries to move global data into
302  * per-processor storage.
303  */
304 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
305 {
306 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
307 
308 	cpu_info->loops_per_jiffy = loops_per_jiffy;
309 }
310 
311 void __init smp_cpus_done(unsigned int max_cpus)
312 {
313 	int cpu;
314 	unsigned long bogosum = 0;
315 
316 	for_each_online_cpu(cpu)
317 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
318 
319 	printk(KERN_INFO "SMP: Total of %d processors activated "
320 	       "(%lu.%02lu BogoMIPS).\n",
321 	       num_online_cpus(),
322 	       bogosum / (500000/HZ),
323 	       (bogosum / (5000/HZ)) % 100);
324 }
325 
326 void __init smp_prepare_boot_cpu(void)
327 {
328 	unsigned int cpu = smp_processor_id();
329 
330 	per_cpu(cpu_data, cpu).idle = current;
331 }
332 
333 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
334 {
335 	unsigned long flags;
336 	unsigned int cpu;
337 
338 	local_irq_save(flags);
339 
340 	for_each_cpu(cpu, mask) {
341 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
342 
343 		spin_lock(&ipi->lock);
344 		ipi->bits |= 1 << msg;
345 		spin_unlock(&ipi->lock);
346 	}
347 
348 	/*
349 	 * Call the platform specific cross-CPU call function.
350 	 */
351 	smp_cross_call(mask);
352 
353 	local_irq_restore(flags);
354 }
355 
356 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
357 {
358 	send_ipi_message(mask, IPI_CALL_FUNC);
359 }
360 
361 void arch_send_call_function_single_ipi(int cpu)
362 {
363 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
364 }
365 
366 void show_ipi_list(struct seq_file *p)
367 {
368 	unsigned int cpu;
369 
370 	seq_puts(p, "IPI:");
371 
372 	for_each_present_cpu(cpu)
373 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
374 
375 	seq_putc(p, '\n');
376 }
377 
378 void show_local_irqs(struct seq_file *p)
379 {
380 	unsigned int cpu;
381 
382 	seq_printf(p, "LOC: ");
383 
384 	for_each_present_cpu(cpu)
385 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
386 
387 	seq_putc(p, '\n');
388 }
389 
390 /*
391  * Timer (local or broadcast) support
392  */
393 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
394 
395 static void ipi_timer(void)
396 {
397 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
398 	irq_enter();
399 	evt->event_handler(evt);
400 	irq_exit();
401 }
402 
403 #ifdef CONFIG_LOCAL_TIMERS
404 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
405 {
406 	struct pt_regs *old_regs = set_irq_regs(regs);
407 	int cpu = smp_processor_id();
408 
409 	if (local_timer_ack()) {
410 		irq_stat[cpu].local_timer_irqs++;
411 		ipi_timer();
412 	}
413 
414 	set_irq_regs(old_regs);
415 }
416 #endif
417 
418 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
419 static void smp_timer_broadcast(const struct cpumask *mask)
420 {
421 	send_ipi_message(mask, IPI_TIMER);
422 }
423 
424 static void broadcast_timer_set_mode(enum clock_event_mode mode,
425 	struct clock_event_device *evt)
426 {
427 }
428 
429 static void local_timer_setup(struct clock_event_device *evt)
430 {
431 	evt->name	= "dummy_timer";
432 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
433 			  CLOCK_EVT_FEAT_PERIODIC |
434 			  CLOCK_EVT_FEAT_DUMMY;
435 	evt->rating	= 400;
436 	evt->mult	= 1;
437 	evt->set_mode	= broadcast_timer_set_mode;
438 	evt->broadcast	= smp_timer_broadcast;
439 
440 	clockevents_register_device(evt);
441 }
442 #endif
443 
444 void __cpuinit percpu_timer_setup(void)
445 {
446 	unsigned int cpu = smp_processor_id();
447 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
448 
449 	evt->cpumask = cpumask_of(cpu);
450 
451 	local_timer_setup(evt);
452 }
453 
454 static DEFINE_SPINLOCK(stop_lock);
455 
456 /*
457  * ipi_cpu_stop - handle IPI from smp_send_stop()
458  */
459 static void ipi_cpu_stop(unsigned int cpu)
460 {
461 	spin_lock(&stop_lock);
462 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
463 	dump_stack();
464 	spin_unlock(&stop_lock);
465 
466 	set_cpu_online(cpu, false);
467 
468 	local_fiq_disable();
469 	local_irq_disable();
470 
471 	while (1)
472 		cpu_relax();
473 }
474 
475 /*
476  * Main handler for inter-processor interrupts
477  *
478  * For ARM, the ipimask now only identifies a single
479  * category of IPI (Bit 1 IPIs have been replaced by a
480  * different mechanism):
481  *
482  *  Bit 0 - Inter-processor function call
483  */
484 asmlinkage void __exception do_IPI(struct pt_regs *regs)
485 {
486 	unsigned int cpu = smp_processor_id();
487 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
488 	struct pt_regs *old_regs = set_irq_regs(regs);
489 
490 	ipi->ipi_count++;
491 
492 	for (;;) {
493 		unsigned long msgs;
494 
495 		spin_lock(&ipi->lock);
496 		msgs = ipi->bits;
497 		ipi->bits = 0;
498 		spin_unlock(&ipi->lock);
499 
500 		if (!msgs)
501 			break;
502 
503 		do {
504 			unsigned nextmsg;
505 
506 			nextmsg = msgs & -msgs;
507 			msgs &= ~nextmsg;
508 			nextmsg = ffz(~nextmsg);
509 
510 			switch (nextmsg) {
511 			case IPI_TIMER:
512 				ipi_timer();
513 				break;
514 
515 			case IPI_RESCHEDULE:
516 				/*
517 				 * nothing more to do - eveything is
518 				 * done on the interrupt return path
519 				 */
520 				break;
521 
522 			case IPI_CALL_FUNC:
523 				generic_smp_call_function_interrupt();
524 				break;
525 
526 			case IPI_CALL_FUNC_SINGLE:
527 				generic_smp_call_function_single_interrupt();
528 				break;
529 
530 			case IPI_CPU_STOP:
531 				ipi_cpu_stop(cpu);
532 				break;
533 
534 			default:
535 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
536 				       cpu, nextmsg);
537 				break;
538 			}
539 		} while (msgs);
540 	}
541 
542 	set_irq_regs(old_regs);
543 }
544 
545 void smp_send_reschedule(int cpu)
546 {
547 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
548 }
549 
550 void smp_send_stop(void)
551 {
552 	cpumask_t mask = cpu_online_map;
553 	cpu_clear(smp_processor_id(), mask);
554 	send_ipi_message(&mask, IPI_CPU_STOP);
555 }
556 
557 /*
558  * not supported here
559  */
560 int setup_profiling_timer(unsigned int multiplier)
561 {
562 	return -EINVAL;
563 }
564 
565 static void
566 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
567 		const struct cpumask *mask)
568 {
569 	preempt_disable();
570 
571 	smp_call_function_many(mask, func, info, wait);
572 	if (cpumask_test_cpu(smp_processor_id(), mask))
573 		func(info);
574 
575 	preempt_enable();
576 }
577 
578 /**********************************************************************/
579 
580 /*
581  * TLB operations
582  */
583 struct tlb_args {
584 	struct vm_area_struct *ta_vma;
585 	unsigned long ta_start;
586 	unsigned long ta_end;
587 };
588 
589 /* all SMP configurations have the extended CPUID registers */
590 static inline int tlb_ops_need_broadcast(void)
591 {
592 	return ((read_cpuid_ext(CPUID_EXT_MMFR3) >> 12) & 0xf) < 2;
593 }
594 
595 static inline void ipi_flush_tlb_all(void *ignored)
596 {
597 	local_flush_tlb_all();
598 }
599 
600 static inline void ipi_flush_tlb_mm(void *arg)
601 {
602 	struct mm_struct *mm = (struct mm_struct *)arg;
603 
604 	local_flush_tlb_mm(mm);
605 }
606 
607 static inline void ipi_flush_tlb_page(void *arg)
608 {
609 	struct tlb_args *ta = (struct tlb_args *)arg;
610 
611 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
612 }
613 
614 static inline void ipi_flush_tlb_kernel_page(void *arg)
615 {
616 	struct tlb_args *ta = (struct tlb_args *)arg;
617 
618 	local_flush_tlb_kernel_page(ta->ta_start);
619 }
620 
621 static inline void ipi_flush_tlb_range(void *arg)
622 {
623 	struct tlb_args *ta = (struct tlb_args *)arg;
624 
625 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
626 }
627 
628 static inline void ipi_flush_tlb_kernel_range(void *arg)
629 {
630 	struct tlb_args *ta = (struct tlb_args *)arg;
631 
632 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
633 }
634 
635 void flush_tlb_all(void)
636 {
637 	if (tlb_ops_need_broadcast())
638 		on_each_cpu(ipi_flush_tlb_all, NULL, 1);
639 	else
640 		local_flush_tlb_all();
641 }
642 
643 void flush_tlb_mm(struct mm_struct *mm)
644 {
645 	if (tlb_ops_need_broadcast())
646 		on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, &mm->cpu_vm_mask);
647 	else
648 		local_flush_tlb_mm(mm);
649 }
650 
651 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
652 {
653 	if (tlb_ops_need_broadcast()) {
654 		struct tlb_args ta;
655 		ta.ta_vma = vma;
656 		ta.ta_start = uaddr;
657 		on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, &vma->vm_mm->cpu_vm_mask);
658 	} else
659 		local_flush_tlb_page(vma, uaddr);
660 }
661 
662 void flush_tlb_kernel_page(unsigned long kaddr)
663 {
664 	if (tlb_ops_need_broadcast()) {
665 		struct tlb_args ta;
666 		ta.ta_start = kaddr;
667 		on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
668 	} else
669 		local_flush_tlb_kernel_page(kaddr);
670 }
671 
672 void flush_tlb_range(struct vm_area_struct *vma,
673                      unsigned long start, unsigned long end)
674 {
675 	if (tlb_ops_need_broadcast()) {
676 		struct tlb_args ta;
677 		ta.ta_vma = vma;
678 		ta.ta_start = start;
679 		ta.ta_end = end;
680 		on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, &vma->vm_mm->cpu_vm_mask);
681 	} else
682 		local_flush_tlb_range(vma, start, end);
683 }
684 
685 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
686 {
687 	if (tlb_ops_need_broadcast()) {
688 		struct tlb_args ta;
689 		ta.ta_start = start;
690 		ta.ta_end = end;
691 		on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
692 	} else
693 		local_flush_tlb_kernel_range(start, end);
694 }
695