1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 #include <linux/kernel_stat.h> 30 31 #include <linux/atomic.h> 32 #include <asm/bugs.h> 33 #include <asm/smp.h> 34 #include <asm/cacheflush.h> 35 #include <asm/cpu.h> 36 #include <asm/cputype.h> 37 #include <asm/exception.h> 38 #include <asm/idmap.h> 39 #include <asm/topology.h> 40 #include <asm/mmu_context.h> 41 #include <asm/procinfo.h> 42 #include <asm/processor.h> 43 #include <asm/sections.h> 44 #include <asm/tlbflush.h> 45 #include <asm/ptrace.h> 46 #include <asm/smp_plat.h> 47 #include <asm/virt.h> 48 #include <asm/mach/arch.h> 49 #include <asm/mpu.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/ipi.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 enum ipi_msg_type { 62 IPI_WAKEUP, 63 IPI_TIMER, 64 IPI_RESCHEDULE, 65 IPI_CALL_FUNC, 66 IPI_CPU_STOP, 67 IPI_IRQ_WORK, 68 IPI_COMPLETION, 69 NR_IPI, 70 /* 71 * CPU_BACKTRACE is special and not included in NR_IPI 72 * or tracable with trace_ipi_* 73 */ 74 IPI_CPU_BACKTRACE = NR_IPI, 75 /* 76 * SGI8-15 can be reserved by secure firmware, and thus may 77 * not be usable by the kernel. Please keep the above limited 78 * to at most 8 entries. 79 */ 80 MAX_IPI 81 }; 82 83 static int ipi_irq_base __read_mostly; 84 static int nr_ipi __read_mostly = NR_IPI; 85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly; 86 87 static void ipi_setup(int cpu); 88 89 static DECLARE_COMPLETION(cpu_running); 90 91 static struct smp_operations smp_ops __ro_after_init; 92 93 void __init smp_set_ops(const struct smp_operations *ops) 94 { 95 if (ops) 96 smp_ops = *ops; 97 }; 98 99 static unsigned long get_arch_pgd(pgd_t *pgd) 100 { 101 #ifdef CONFIG_ARM_LPAE 102 return __phys_to_pfn(virt_to_phys(pgd)); 103 #else 104 return virt_to_phys(pgd); 105 #endif 106 } 107 108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 109 static int secondary_biglittle_prepare(unsigned int cpu) 110 { 111 if (!cpu_vtable[cpu]) 112 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 113 114 return cpu_vtable[cpu] ? 0 : -ENOMEM; 115 } 116 117 static void secondary_biglittle_init(void) 118 { 119 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 120 } 121 #else 122 static int secondary_biglittle_prepare(unsigned int cpu) 123 { 124 return 0; 125 } 126 127 static void secondary_biglittle_init(void) 128 { 129 } 130 #endif 131 132 int __cpu_up(unsigned int cpu, struct task_struct *idle) 133 { 134 int ret; 135 136 if (!smp_ops.smp_boot_secondary) 137 return -ENOSYS; 138 139 ret = secondary_biglittle_prepare(cpu); 140 if (ret) 141 return ret; 142 143 /* 144 * We need to tell the secondary core where to find 145 * its stack and the page tables. 146 */ 147 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 148 #ifdef CONFIG_ARM_MPU 149 secondary_data.mpu_rgn_info = &mpu_rgn_info; 150 #endif 151 152 #ifdef CONFIG_MMU 153 secondary_data.pgdir = virt_to_phys(idmap_pgd); 154 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 155 #endif 156 secondary_data.task = idle; 157 sync_cache_w(&secondary_data); 158 159 /* 160 * Now bring the CPU into our world. 161 */ 162 ret = smp_ops.smp_boot_secondary(cpu, idle); 163 if (ret == 0) { 164 /* 165 * CPU was successfully started, wait for it 166 * to come online or time out. 167 */ 168 wait_for_completion_timeout(&cpu_running, 169 msecs_to_jiffies(1000)); 170 171 if (!cpu_online(cpu)) { 172 pr_crit("CPU%u: failed to come online\n", cpu); 173 ret = -EIO; 174 } 175 } else { 176 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 177 } 178 179 180 memset(&secondary_data, 0, sizeof(secondary_data)); 181 return ret; 182 } 183 184 /* platform specific SMP operations */ 185 void __init smp_init_cpus(void) 186 { 187 if (smp_ops.smp_init_cpus) 188 smp_ops.smp_init_cpus(); 189 } 190 191 int platform_can_secondary_boot(void) 192 { 193 return !!smp_ops.smp_boot_secondary; 194 } 195 196 int platform_can_cpu_hotplug(void) 197 { 198 #ifdef CONFIG_HOTPLUG_CPU 199 if (smp_ops.cpu_kill) 200 return 1; 201 #endif 202 203 return 0; 204 } 205 206 #ifdef CONFIG_HOTPLUG_CPU 207 static int platform_cpu_kill(unsigned int cpu) 208 { 209 if (smp_ops.cpu_kill) 210 return smp_ops.cpu_kill(cpu); 211 return 1; 212 } 213 214 static int platform_cpu_disable(unsigned int cpu) 215 { 216 if (smp_ops.cpu_disable) 217 return smp_ops.cpu_disable(cpu); 218 219 return 0; 220 } 221 222 int platform_can_hotplug_cpu(unsigned int cpu) 223 { 224 /* cpu_die must be specified to support hotplug */ 225 if (!smp_ops.cpu_die) 226 return 0; 227 228 if (smp_ops.cpu_can_disable) 229 return smp_ops.cpu_can_disable(cpu); 230 231 /* 232 * By default, allow disabling all CPUs except the first one, 233 * since this is special on a lot of platforms, e.g. because 234 * of clock tick interrupts. 235 */ 236 return cpu != 0; 237 } 238 239 static void ipi_teardown(int cpu) 240 { 241 int i; 242 243 if (WARN_ON_ONCE(!ipi_irq_base)) 244 return; 245 246 for (i = 0; i < nr_ipi; i++) 247 disable_percpu_irq(ipi_irq_base + i); 248 } 249 250 /* 251 * __cpu_disable runs on the processor to be shutdown. 252 */ 253 int __cpu_disable(void) 254 { 255 unsigned int cpu = smp_processor_id(); 256 int ret; 257 258 ret = platform_cpu_disable(cpu); 259 if (ret) 260 return ret; 261 262 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY 263 remove_cpu_topology(cpu); 264 #endif 265 266 /* 267 * Take this CPU offline. Once we clear this, we can't return, 268 * and we must not schedule until we're ready to give up the cpu. 269 */ 270 set_cpu_online(cpu, false); 271 ipi_teardown(cpu); 272 273 /* 274 * OK - migrate IRQs away from this CPU 275 */ 276 irq_migrate_all_off_this_cpu(); 277 278 /* 279 * Flush user cache and TLB mappings, and then remove this CPU 280 * from the vm mask set of all processes. 281 * 282 * Caches are flushed to the Level of Unification Inner Shareable 283 * to write-back dirty lines to unified caches shared by all CPUs. 284 */ 285 flush_cache_louis(); 286 local_flush_tlb_all(); 287 288 return 0; 289 } 290 291 /* 292 * called on the thread which is asking for a CPU to be shutdown - 293 * waits until shutdown has completed, or it is timed out. 294 */ 295 void __cpu_die(unsigned int cpu) 296 { 297 if (!cpu_wait_death(cpu, 5)) { 298 pr_err("CPU%u: cpu didn't die\n", cpu); 299 return; 300 } 301 pr_debug("CPU%u: shutdown\n", cpu); 302 303 clear_tasks_mm_cpumask(cpu); 304 /* 305 * platform_cpu_kill() is generally expected to do the powering off 306 * and/or cutting of clocks to the dying CPU. Optionally, this may 307 * be done by the CPU which is dying in preference to supporting 308 * this call, but that means there is _no_ synchronisation between 309 * the requesting CPU and the dying CPU actually losing power. 310 */ 311 if (!platform_cpu_kill(cpu)) 312 pr_err("CPU%u: unable to kill\n", cpu); 313 } 314 315 /* 316 * Called from the idle thread for the CPU which has been shutdown. 317 * 318 * Note that we disable IRQs here, but do not re-enable them 319 * before returning to the caller. This is also the behaviour 320 * of the other hotplug-cpu capable cores, so presumably coming 321 * out of idle fixes this. 322 */ 323 void __noreturn arch_cpu_idle_dead(void) 324 { 325 unsigned int cpu = smp_processor_id(); 326 327 idle_task_exit(); 328 329 local_irq_disable(); 330 331 /* 332 * Flush the data out of the L1 cache for this CPU. This must be 333 * before the completion to ensure that data is safely written out 334 * before platform_cpu_kill() gets called - which may disable 335 * *this* CPU and power down its cache. 336 */ 337 flush_cache_louis(); 338 339 /* 340 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 341 * this returns, power and/or clocks can be removed at any point 342 * from this CPU and its cache by platform_cpu_kill(). 343 */ 344 (void)cpu_report_death(); 345 346 /* 347 * Ensure that the cache lines associated with that completion are 348 * written out. This covers the case where _this_ CPU is doing the 349 * powering down, to ensure that the completion is visible to the 350 * CPU waiting for this one. 351 */ 352 flush_cache_louis(); 353 354 /* 355 * The actual CPU shutdown procedure is at least platform (if not 356 * CPU) specific. This may remove power, or it may simply spin. 357 * 358 * Platforms are generally expected *NOT* to return from this call, 359 * although there are some which do because they have no way to 360 * power down the CPU. These platforms are the _only_ reason we 361 * have a return path which uses the fragment of assembly below. 362 * 363 * The return path should not be used for platforms which can 364 * power off the CPU. 365 */ 366 if (smp_ops.cpu_die) 367 smp_ops.cpu_die(cpu); 368 369 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 370 cpu); 371 372 /* 373 * Do not return to the idle loop - jump back to the secondary 374 * cpu initialisation. There's some initialisation which needs 375 * to be repeated to undo the effects of taking the CPU offline. 376 */ 377 __asm__("mov sp, %0\n" 378 " mov fp, #0\n" 379 " mov r0, %1\n" 380 " b secondary_start_kernel" 381 : 382 : "r" (task_stack_page(current) + THREAD_SIZE - 8), 383 "r" (current) 384 : "r0"); 385 386 unreachable(); 387 } 388 #endif /* CONFIG_HOTPLUG_CPU */ 389 390 /* 391 * Called by both boot and secondaries to move global data into 392 * per-processor storage. 393 */ 394 static void smp_store_cpu_info(unsigned int cpuid) 395 { 396 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 397 398 cpu_info->loops_per_jiffy = loops_per_jiffy; 399 cpu_info->cpuid = read_cpuid_id(); 400 401 store_cpu_topology(cpuid); 402 check_cpu_icache_size(cpuid); 403 } 404 405 static void set_current(struct task_struct *cur) 406 { 407 /* Set TPIDRURO */ 408 asm("mcr p15, 0, %0, c13, c0, 3" :: "r"(cur) : "memory"); 409 } 410 411 /* 412 * This is the secondary CPU boot entry. We're using this CPUs 413 * idle thread stack, but a set of temporary page tables. 414 */ 415 asmlinkage void secondary_start_kernel(struct task_struct *task) 416 { 417 struct mm_struct *mm = &init_mm; 418 unsigned int cpu; 419 420 set_current(task); 421 422 secondary_biglittle_init(); 423 424 /* 425 * The identity mapping is uncached (strongly ordered), so 426 * switch away from it before attempting any exclusive accesses. 427 */ 428 cpu_switch_mm(mm->pgd, mm); 429 local_flush_bp_all(); 430 enter_lazy_tlb(mm, current); 431 local_flush_tlb_all(); 432 433 /* 434 * All kernel threads share the same mm context; grab a 435 * reference and switch to it. 436 */ 437 cpu = smp_processor_id(); 438 mmgrab(mm); 439 current->active_mm = mm; 440 cpumask_set_cpu(cpu, mm_cpumask(mm)); 441 442 cpu_init(); 443 444 #ifndef CONFIG_MMU 445 setup_vectors_base(); 446 #endif 447 pr_debug("CPU%u: Booted secondary processor\n", cpu); 448 449 trace_hardirqs_off(); 450 451 /* 452 * Give the platform a chance to do its own initialisation. 453 */ 454 if (smp_ops.smp_secondary_init) 455 smp_ops.smp_secondary_init(cpu); 456 457 notify_cpu_starting(cpu); 458 459 ipi_setup(cpu); 460 461 calibrate_delay(); 462 463 smp_store_cpu_info(cpu); 464 465 /* 466 * OK, now it's safe to let the boot CPU continue. Wait for 467 * the CPU migration code to notice that the CPU is online 468 * before we continue - which happens after __cpu_up returns. 469 */ 470 set_cpu_online(cpu, true); 471 472 check_other_bugs(); 473 474 complete(&cpu_running); 475 476 local_irq_enable(); 477 local_fiq_enable(); 478 local_abt_enable(); 479 480 /* 481 * OK, it's off to the idle thread for us 482 */ 483 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 484 } 485 486 void __init smp_cpus_done(unsigned int max_cpus) 487 { 488 int cpu; 489 unsigned long bogosum = 0; 490 491 for_each_online_cpu(cpu) 492 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 493 494 printk(KERN_INFO "SMP: Total of %d processors activated " 495 "(%lu.%02lu BogoMIPS).\n", 496 num_online_cpus(), 497 bogosum / (500000/HZ), 498 (bogosum / (5000/HZ)) % 100); 499 500 hyp_mode_check(); 501 } 502 503 void __init smp_prepare_boot_cpu(void) 504 { 505 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 506 } 507 508 void __init smp_prepare_cpus(unsigned int max_cpus) 509 { 510 unsigned int ncores = num_possible_cpus(); 511 512 init_cpu_topology(); 513 514 smp_store_cpu_info(smp_processor_id()); 515 516 /* 517 * are we trying to boot more cores than exist? 518 */ 519 if (max_cpus > ncores) 520 max_cpus = ncores; 521 if (ncores > 1 && max_cpus) { 522 /* 523 * Initialise the present map, which describes the set of CPUs 524 * actually populated at the present time. A platform should 525 * re-initialize the map in the platforms smp_prepare_cpus() 526 * if present != possible (e.g. physical hotplug). 527 */ 528 init_cpu_present(cpu_possible_mask); 529 530 /* 531 * Initialise the SCU if there are more than one CPU 532 * and let them know where to start. 533 */ 534 if (smp_ops.smp_prepare_cpus) 535 smp_ops.smp_prepare_cpus(max_cpus); 536 } 537 } 538 539 static const char *ipi_types[NR_IPI] __tracepoint_string = { 540 [IPI_WAKEUP] = "CPU wakeup interrupts", 541 [IPI_TIMER] = "Timer broadcast interrupts", 542 [IPI_RESCHEDULE] = "Rescheduling interrupts", 543 [IPI_CALL_FUNC] = "Function call interrupts", 544 [IPI_CPU_STOP] = "CPU stop interrupts", 545 [IPI_IRQ_WORK] = "IRQ work interrupts", 546 [IPI_COMPLETION] = "completion interrupts", 547 }; 548 549 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); 550 551 void show_ipi_list(struct seq_file *p, int prec) 552 { 553 unsigned int cpu, i; 554 555 for (i = 0; i < NR_IPI; i++) { 556 if (!ipi_desc[i]) 557 continue; 558 559 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 560 561 for_each_online_cpu(cpu) 562 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu)); 563 564 seq_printf(p, " %s\n", ipi_types[i]); 565 } 566 } 567 568 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 569 { 570 smp_cross_call(mask, IPI_CALL_FUNC); 571 } 572 573 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 574 { 575 smp_cross_call(mask, IPI_WAKEUP); 576 } 577 578 void arch_send_call_function_single_ipi(int cpu) 579 { 580 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 581 } 582 583 #ifdef CONFIG_IRQ_WORK 584 void arch_irq_work_raise(void) 585 { 586 if (arch_irq_work_has_interrupt()) 587 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 588 } 589 #endif 590 591 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 592 void tick_broadcast(const struct cpumask *mask) 593 { 594 smp_cross_call(mask, IPI_TIMER); 595 } 596 #endif 597 598 static DEFINE_RAW_SPINLOCK(stop_lock); 599 600 /* 601 * ipi_cpu_stop - handle IPI from smp_send_stop() 602 */ 603 static void ipi_cpu_stop(unsigned int cpu) 604 { 605 local_fiq_disable(); 606 607 if (system_state <= SYSTEM_RUNNING) { 608 raw_spin_lock(&stop_lock); 609 pr_crit("CPU%u: stopping\n", cpu); 610 dump_stack(); 611 raw_spin_unlock(&stop_lock); 612 } 613 614 set_cpu_online(cpu, false); 615 616 while (1) { 617 cpu_relax(); 618 wfe(); 619 } 620 } 621 622 static DEFINE_PER_CPU(struct completion *, cpu_completion); 623 624 int register_ipi_completion(struct completion *completion, int cpu) 625 { 626 per_cpu(cpu_completion, cpu) = completion; 627 return IPI_COMPLETION; 628 } 629 630 static void ipi_complete(unsigned int cpu) 631 { 632 complete(per_cpu(cpu_completion, cpu)); 633 } 634 635 /* 636 * Main handler for inter-processor interrupts 637 */ 638 static void do_handle_IPI(int ipinr) 639 { 640 unsigned int cpu = smp_processor_id(); 641 642 if ((unsigned)ipinr < NR_IPI) 643 trace_ipi_entry(ipi_types[ipinr]); 644 645 switch (ipinr) { 646 case IPI_WAKEUP: 647 break; 648 649 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 650 case IPI_TIMER: 651 tick_receive_broadcast(); 652 break; 653 #endif 654 655 case IPI_RESCHEDULE: 656 scheduler_ipi(); 657 break; 658 659 case IPI_CALL_FUNC: 660 generic_smp_call_function_interrupt(); 661 break; 662 663 case IPI_CPU_STOP: 664 ipi_cpu_stop(cpu); 665 break; 666 667 #ifdef CONFIG_IRQ_WORK 668 case IPI_IRQ_WORK: 669 irq_work_run(); 670 break; 671 #endif 672 673 case IPI_COMPLETION: 674 ipi_complete(cpu); 675 break; 676 677 case IPI_CPU_BACKTRACE: 678 printk_deferred_enter(); 679 nmi_cpu_backtrace(get_irq_regs()); 680 printk_deferred_exit(); 681 break; 682 683 default: 684 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 685 cpu, ipinr); 686 break; 687 } 688 689 if ((unsigned)ipinr < NR_IPI) 690 trace_ipi_exit(ipi_types[ipinr]); 691 } 692 693 /* Legacy version, should go away once all irqchips have been converted */ 694 void handle_IPI(int ipinr, struct pt_regs *regs) 695 { 696 struct pt_regs *old_regs = set_irq_regs(regs); 697 698 irq_enter(); 699 do_handle_IPI(ipinr); 700 irq_exit(); 701 702 set_irq_regs(old_regs); 703 } 704 705 static irqreturn_t ipi_handler(int irq, void *data) 706 { 707 do_handle_IPI(irq - ipi_irq_base); 708 return IRQ_HANDLED; 709 } 710 711 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 712 { 713 trace_ipi_raise(target, ipi_types[ipinr]); 714 __ipi_send_mask(ipi_desc[ipinr], target); 715 } 716 717 static void ipi_setup(int cpu) 718 { 719 int i; 720 721 if (WARN_ON_ONCE(!ipi_irq_base)) 722 return; 723 724 for (i = 0; i < nr_ipi; i++) 725 enable_percpu_irq(ipi_irq_base + i, 0); 726 } 727 728 void __init set_smp_ipi_range(int ipi_base, int n) 729 { 730 int i; 731 732 WARN_ON(n < MAX_IPI); 733 nr_ipi = min(n, MAX_IPI); 734 735 for (i = 0; i < nr_ipi; i++) { 736 int err; 737 738 err = request_percpu_irq(ipi_base + i, ipi_handler, 739 "IPI", &irq_stat); 740 WARN_ON(err); 741 742 ipi_desc[i] = irq_to_desc(ipi_base + i); 743 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); 744 } 745 746 ipi_irq_base = ipi_base; 747 748 /* Setup the boot CPU immediately */ 749 ipi_setup(smp_processor_id()); 750 } 751 752 void smp_send_reschedule(int cpu) 753 { 754 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 755 } 756 757 void smp_send_stop(void) 758 { 759 unsigned long timeout; 760 struct cpumask mask; 761 762 cpumask_copy(&mask, cpu_online_mask); 763 cpumask_clear_cpu(smp_processor_id(), &mask); 764 if (!cpumask_empty(&mask)) 765 smp_cross_call(&mask, IPI_CPU_STOP); 766 767 /* Wait up to one second for other CPUs to stop */ 768 timeout = USEC_PER_SEC; 769 while (num_online_cpus() > 1 && timeout--) 770 udelay(1); 771 772 if (num_online_cpus() > 1) 773 pr_warn("SMP: failed to stop secondary CPUs\n"); 774 } 775 776 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 777 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 778 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 779 * kdump fails. So split out the panic_smp_self_stop() and add 780 * set_cpu_online(smp_processor_id(), false). 781 */ 782 void panic_smp_self_stop(void) 783 { 784 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 785 smp_processor_id()); 786 set_cpu_online(smp_processor_id(), false); 787 while (1) 788 cpu_relax(); 789 } 790 791 #ifdef CONFIG_CPU_FREQ 792 793 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 794 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 795 static unsigned long global_l_p_j_ref; 796 static unsigned long global_l_p_j_ref_freq; 797 798 static int cpufreq_callback(struct notifier_block *nb, 799 unsigned long val, void *data) 800 { 801 struct cpufreq_freqs *freq = data; 802 struct cpumask *cpus = freq->policy->cpus; 803 int cpu, first = cpumask_first(cpus); 804 unsigned int lpj; 805 806 if (freq->flags & CPUFREQ_CONST_LOOPS) 807 return NOTIFY_OK; 808 809 if (!per_cpu(l_p_j_ref, first)) { 810 for_each_cpu(cpu, cpus) { 811 per_cpu(l_p_j_ref, cpu) = 812 per_cpu(cpu_data, cpu).loops_per_jiffy; 813 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 814 } 815 816 if (!global_l_p_j_ref) { 817 global_l_p_j_ref = loops_per_jiffy; 818 global_l_p_j_ref_freq = freq->old; 819 } 820 } 821 822 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 823 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 824 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 825 global_l_p_j_ref_freq, 826 freq->new); 827 828 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 829 per_cpu(l_p_j_ref_freq, first), freq->new); 830 for_each_cpu(cpu, cpus) 831 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 832 } 833 return NOTIFY_OK; 834 } 835 836 static struct notifier_block cpufreq_notifier = { 837 .notifier_call = cpufreq_callback, 838 }; 839 840 static int __init register_cpufreq_notifier(void) 841 { 842 return cpufreq_register_notifier(&cpufreq_notifier, 843 CPUFREQ_TRANSITION_NOTIFIER); 844 } 845 core_initcall(register_cpufreq_notifier); 846 847 #endif 848 849 static void raise_nmi(cpumask_t *mask) 850 { 851 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask); 852 } 853 854 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 855 { 856 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 857 } 858