1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/bugs.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgalloc.h> 41 #include <asm/procinfo.h> 42 #include <asm/processor.h> 43 #include <asm/sections.h> 44 #include <asm/tlbflush.h> 45 #include <asm/ptrace.h> 46 #include <asm/smp_plat.h> 47 #include <asm/virt.h> 48 #include <asm/mach/arch.h> 49 #include <asm/mpu.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/ipi.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 enum ipi_msg_type { 62 IPI_WAKEUP, 63 IPI_TIMER, 64 IPI_RESCHEDULE, 65 IPI_CALL_FUNC, 66 IPI_CPU_STOP, 67 IPI_IRQ_WORK, 68 IPI_COMPLETION, 69 /* 70 * CPU_BACKTRACE is special and not included in NR_IPI 71 * or tracable with trace_ipi_* 72 */ 73 IPI_CPU_BACKTRACE, 74 /* 75 * SGI8-15 can be reserved by secure firmware, and thus may 76 * not be usable by the kernel. Please keep the above limited 77 * to at most 8 entries. 78 */ 79 }; 80 81 static DECLARE_COMPLETION(cpu_running); 82 83 static struct smp_operations smp_ops __ro_after_init; 84 85 void __init smp_set_ops(const struct smp_operations *ops) 86 { 87 if (ops) 88 smp_ops = *ops; 89 }; 90 91 static unsigned long get_arch_pgd(pgd_t *pgd) 92 { 93 #ifdef CONFIG_ARM_LPAE 94 return __phys_to_pfn(virt_to_phys(pgd)); 95 #else 96 return virt_to_phys(pgd); 97 #endif 98 } 99 100 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 101 static int secondary_biglittle_prepare(unsigned int cpu) 102 { 103 if (!cpu_vtable[cpu]) 104 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 105 106 return cpu_vtable[cpu] ? 0 : -ENOMEM; 107 } 108 109 static void secondary_biglittle_init(void) 110 { 111 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 112 } 113 #else 114 static int secondary_biglittle_prepare(unsigned int cpu) 115 { 116 return 0; 117 } 118 119 static void secondary_biglittle_init(void) 120 { 121 } 122 #endif 123 124 int __cpu_up(unsigned int cpu, struct task_struct *idle) 125 { 126 int ret; 127 128 if (!smp_ops.smp_boot_secondary) 129 return -ENOSYS; 130 131 ret = secondary_biglittle_prepare(cpu); 132 if (ret) 133 return ret; 134 135 /* 136 * We need to tell the secondary core where to find 137 * its stack and the page tables. 138 */ 139 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 140 #ifdef CONFIG_ARM_MPU 141 secondary_data.mpu_rgn_info = &mpu_rgn_info; 142 #endif 143 144 #ifdef CONFIG_MMU 145 secondary_data.pgdir = virt_to_phys(idmap_pgd); 146 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 147 #endif 148 sync_cache_w(&secondary_data); 149 150 /* 151 * Now bring the CPU into our world. 152 */ 153 ret = smp_ops.smp_boot_secondary(cpu, idle); 154 if (ret == 0) { 155 /* 156 * CPU was successfully started, wait for it 157 * to come online or time out. 158 */ 159 wait_for_completion_timeout(&cpu_running, 160 msecs_to_jiffies(1000)); 161 162 if (!cpu_online(cpu)) { 163 pr_crit("CPU%u: failed to come online\n", cpu); 164 ret = -EIO; 165 } 166 } else { 167 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 168 } 169 170 171 memset(&secondary_data, 0, sizeof(secondary_data)); 172 return ret; 173 } 174 175 /* platform specific SMP operations */ 176 void __init smp_init_cpus(void) 177 { 178 if (smp_ops.smp_init_cpus) 179 smp_ops.smp_init_cpus(); 180 } 181 182 int platform_can_secondary_boot(void) 183 { 184 return !!smp_ops.smp_boot_secondary; 185 } 186 187 int platform_can_cpu_hotplug(void) 188 { 189 #ifdef CONFIG_HOTPLUG_CPU 190 if (smp_ops.cpu_kill) 191 return 1; 192 #endif 193 194 return 0; 195 } 196 197 #ifdef CONFIG_HOTPLUG_CPU 198 static int platform_cpu_kill(unsigned int cpu) 199 { 200 if (smp_ops.cpu_kill) 201 return smp_ops.cpu_kill(cpu); 202 return 1; 203 } 204 205 static int platform_cpu_disable(unsigned int cpu) 206 { 207 if (smp_ops.cpu_disable) 208 return smp_ops.cpu_disable(cpu); 209 210 return 0; 211 } 212 213 int platform_can_hotplug_cpu(unsigned int cpu) 214 { 215 /* cpu_die must be specified to support hotplug */ 216 if (!smp_ops.cpu_die) 217 return 0; 218 219 if (smp_ops.cpu_can_disable) 220 return smp_ops.cpu_can_disable(cpu); 221 222 /* 223 * By default, allow disabling all CPUs except the first one, 224 * since this is special on a lot of platforms, e.g. because 225 * of clock tick interrupts. 226 */ 227 return cpu != 0; 228 } 229 230 /* 231 * __cpu_disable runs on the processor to be shutdown. 232 */ 233 int __cpu_disable(void) 234 { 235 unsigned int cpu = smp_processor_id(); 236 int ret; 237 238 ret = platform_cpu_disable(cpu); 239 if (ret) 240 return ret; 241 242 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY 243 remove_cpu_topology(cpu); 244 #endif 245 246 /* 247 * Take this CPU offline. Once we clear this, we can't return, 248 * and we must not schedule until we're ready to give up the cpu. 249 */ 250 set_cpu_online(cpu, false); 251 252 /* 253 * OK - migrate IRQs away from this CPU 254 */ 255 irq_migrate_all_off_this_cpu(); 256 257 /* 258 * Flush user cache and TLB mappings, and then remove this CPU 259 * from the vm mask set of all processes. 260 * 261 * Caches are flushed to the Level of Unification Inner Shareable 262 * to write-back dirty lines to unified caches shared by all CPUs. 263 */ 264 flush_cache_louis(); 265 local_flush_tlb_all(); 266 267 return 0; 268 } 269 270 /* 271 * called on the thread which is asking for a CPU to be shutdown - 272 * waits until shutdown has completed, or it is timed out. 273 */ 274 void __cpu_die(unsigned int cpu) 275 { 276 if (!cpu_wait_death(cpu, 5)) { 277 pr_err("CPU%u: cpu didn't die\n", cpu); 278 return; 279 } 280 pr_debug("CPU%u: shutdown\n", cpu); 281 282 clear_tasks_mm_cpumask(cpu); 283 /* 284 * platform_cpu_kill() is generally expected to do the powering off 285 * and/or cutting of clocks to the dying CPU. Optionally, this may 286 * be done by the CPU which is dying in preference to supporting 287 * this call, but that means there is _no_ synchronisation between 288 * the requesting CPU and the dying CPU actually losing power. 289 */ 290 if (!platform_cpu_kill(cpu)) 291 pr_err("CPU%u: unable to kill\n", cpu); 292 } 293 294 /* 295 * Called from the idle thread for the CPU which has been shutdown. 296 * 297 * Note that we disable IRQs here, but do not re-enable them 298 * before returning to the caller. This is also the behaviour 299 * of the other hotplug-cpu capable cores, so presumably coming 300 * out of idle fixes this. 301 */ 302 void arch_cpu_idle_dead(void) 303 { 304 unsigned int cpu = smp_processor_id(); 305 306 idle_task_exit(); 307 308 local_irq_disable(); 309 310 /* 311 * Flush the data out of the L1 cache for this CPU. This must be 312 * before the completion to ensure that data is safely written out 313 * before platform_cpu_kill() gets called - which may disable 314 * *this* CPU and power down its cache. 315 */ 316 flush_cache_louis(); 317 318 /* 319 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 320 * this returns, power and/or clocks can be removed at any point 321 * from this CPU and its cache by platform_cpu_kill(). 322 */ 323 (void)cpu_report_death(); 324 325 /* 326 * Ensure that the cache lines associated with that completion are 327 * written out. This covers the case where _this_ CPU is doing the 328 * powering down, to ensure that the completion is visible to the 329 * CPU waiting for this one. 330 */ 331 flush_cache_louis(); 332 333 /* 334 * The actual CPU shutdown procedure is at least platform (if not 335 * CPU) specific. This may remove power, or it may simply spin. 336 * 337 * Platforms are generally expected *NOT* to return from this call, 338 * although there are some which do because they have no way to 339 * power down the CPU. These platforms are the _only_ reason we 340 * have a return path which uses the fragment of assembly below. 341 * 342 * The return path should not be used for platforms which can 343 * power off the CPU. 344 */ 345 if (smp_ops.cpu_die) 346 smp_ops.cpu_die(cpu); 347 348 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 349 cpu); 350 351 /* 352 * Do not return to the idle loop - jump back to the secondary 353 * cpu initialisation. There's some initialisation which needs 354 * to be repeated to undo the effects of taking the CPU offline. 355 */ 356 __asm__("mov sp, %0\n" 357 " mov fp, #0\n" 358 " b secondary_start_kernel" 359 : 360 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 361 } 362 #endif /* CONFIG_HOTPLUG_CPU */ 363 364 /* 365 * Called by both boot and secondaries to move global data into 366 * per-processor storage. 367 */ 368 static void smp_store_cpu_info(unsigned int cpuid) 369 { 370 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 371 372 cpu_info->loops_per_jiffy = loops_per_jiffy; 373 cpu_info->cpuid = read_cpuid_id(); 374 375 store_cpu_topology(cpuid); 376 check_cpu_icache_size(cpuid); 377 } 378 379 /* 380 * This is the secondary CPU boot entry. We're using this CPUs 381 * idle thread stack, but a set of temporary page tables. 382 */ 383 asmlinkage void secondary_start_kernel(void) 384 { 385 struct mm_struct *mm = &init_mm; 386 unsigned int cpu; 387 388 secondary_biglittle_init(); 389 390 /* 391 * The identity mapping is uncached (strongly ordered), so 392 * switch away from it before attempting any exclusive accesses. 393 */ 394 cpu_switch_mm(mm->pgd, mm); 395 local_flush_bp_all(); 396 enter_lazy_tlb(mm, current); 397 local_flush_tlb_all(); 398 399 /* 400 * All kernel threads share the same mm context; grab a 401 * reference and switch to it. 402 */ 403 cpu = smp_processor_id(); 404 mmgrab(mm); 405 current->active_mm = mm; 406 cpumask_set_cpu(cpu, mm_cpumask(mm)); 407 408 cpu_init(); 409 410 #ifndef CONFIG_MMU 411 setup_vectors_base(); 412 #endif 413 pr_debug("CPU%u: Booted secondary processor\n", cpu); 414 415 preempt_disable(); 416 trace_hardirqs_off(); 417 418 /* 419 * Give the platform a chance to do its own initialisation. 420 */ 421 if (smp_ops.smp_secondary_init) 422 smp_ops.smp_secondary_init(cpu); 423 424 notify_cpu_starting(cpu); 425 426 calibrate_delay(); 427 428 smp_store_cpu_info(cpu); 429 430 /* 431 * OK, now it's safe to let the boot CPU continue. Wait for 432 * the CPU migration code to notice that the CPU is online 433 * before we continue - which happens after __cpu_up returns. 434 */ 435 set_cpu_online(cpu, true); 436 437 check_other_bugs(); 438 439 complete(&cpu_running); 440 441 local_irq_enable(); 442 local_fiq_enable(); 443 local_abt_enable(); 444 445 /* 446 * OK, it's off to the idle thread for us 447 */ 448 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 449 } 450 451 void __init smp_cpus_done(unsigned int max_cpus) 452 { 453 int cpu; 454 unsigned long bogosum = 0; 455 456 for_each_online_cpu(cpu) 457 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 458 459 printk(KERN_INFO "SMP: Total of %d processors activated " 460 "(%lu.%02lu BogoMIPS).\n", 461 num_online_cpus(), 462 bogosum / (500000/HZ), 463 (bogosum / (5000/HZ)) % 100); 464 465 hyp_mode_check(); 466 } 467 468 void __init smp_prepare_boot_cpu(void) 469 { 470 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 471 } 472 473 void __init smp_prepare_cpus(unsigned int max_cpus) 474 { 475 unsigned int ncores = num_possible_cpus(); 476 477 init_cpu_topology(); 478 479 smp_store_cpu_info(smp_processor_id()); 480 481 /* 482 * are we trying to boot more cores than exist? 483 */ 484 if (max_cpus > ncores) 485 max_cpus = ncores; 486 if (ncores > 1 && max_cpus) { 487 /* 488 * Initialise the present map, which describes the set of CPUs 489 * actually populated at the present time. A platform should 490 * re-initialize the map in the platforms smp_prepare_cpus() 491 * if present != possible (e.g. physical hotplug). 492 */ 493 init_cpu_present(cpu_possible_mask); 494 495 /* 496 * Initialise the SCU if there are more than one CPU 497 * and let them know where to start. 498 */ 499 if (smp_ops.smp_prepare_cpus) 500 smp_ops.smp_prepare_cpus(max_cpus); 501 } 502 } 503 504 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 505 506 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 507 { 508 if (!__smp_cross_call) 509 __smp_cross_call = fn; 510 } 511 512 static const char *ipi_types[NR_IPI] __tracepoint_string = { 513 #define S(x,s) [x] = s 514 S(IPI_WAKEUP, "CPU wakeup interrupts"), 515 S(IPI_TIMER, "Timer broadcast interrupts"), 516 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 517 S(IPI_CALL_FUNC, "Function call interrupts"), 518 S(IPI_CPU_STOP, "CPU stop interrupts"), 519 S(IPI_IRQ_WORK, "IRQ work interrupts"), 520 S(IPI_COMPLETION, "completion interrupts"), 521 }; 522 523 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 524 { 525 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 526 __smp_cross_call(target, ipinr); 527 } 528 529 void show_ipi_list(struct seq_file *p, int prec) 530 { 531 unsigned int cpu, i; 532 533 for (i = 0; i < NR_IPI; i++) { 534 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 535 536 for_each_online_cpu(cpu) 537 seq_printf(p, "%10u ", 538 __get_irq_stat(cpu, ipi_irqs[i])); 539 540 seq_printf(p, " %s\n", ipi_types[i]); 541 } 542 } 543 544 u64 smp_irq_stat_cpu(unsigned int cpu) 545 { 546 u64 sum = 0; 547 int i; 548 549 for (i = 0; i < NR_IPI; i++) 550 sum += __get_irq_stat(cpu, ipi_irqs[i]); 551 552 return sum; 553 } 554 555 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 556 { 557 smp_cross_call(mask, IPI_CALL_FUNC); 558 } 559 560 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 561 { 562 smp_cross_call(mask, IPI_WAKEUP); 563 } 564 565 void arch_send_call_function_single_ipi(int cpu) 566 { 567 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 568 } 569 570 #ifdef CONFIG_IRQ_WORK 571 void arch_irq_work_raise(void) 572 { 573 if (arch_irq_work_has_interrupt()) 574 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 575 } 576 #endif 577 578 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 579 void tick_broadcast(const struct cpumask *mask) 580 { 581 smp_cross_call(mask, IPI_TIMER); 582 } 583 #endif 584 585 static DEFINE_RAW_SPINLOCK(stop_lock); 586 587 /* 588 * ipi_cpu_stop - handle IPI from smp_send_stop() 589 */ 590 static void ipi_cpu_stop(unsigned int cpu) 591 { 592 if (system_state <= SYSTEM_RUNNING) { 593 raw_spin_lock(&stop_lock); 594 pr_crit("CPU%u: stopping\n", cpu); 595 dump_stack(); 596 raw_spin_unlock(&stop_lock); 597 } 598 599 set_cpu_online(cpu, false); 600 601 local_fiq_disable(); 602 local_irq_disable(); 603 604 while (1) { 605 cpu_relax(); 606 wfe(); 607 } 608 } 609 610 static DEFINE_PER_CPU(struct completion *, cpu_completion); 611 612 int register_ipi_completion(struct completion *completion, int cpu) 613 { 614 per_cpu(cpu_completion, cpu) = completion; 615 return IPI_COMPLETION; 616 } 617 618 static void ipi_complete(unsigned int cpu) 619 { 620 complete(per_cpu(cpu_completion, cpu)); 621 } 622 623 /* 624 * Main handler for inter-processor interrupts 625 */ 626 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 627 { 628 handle_IPI(ipinr, regs); 629 } 630 631 void handle_IPI(int ipinr, struct pt_regs *regs) 632 { 633 unsigned int cpu = smp_processor_id(); 634 struct pt_regs *old_regs = set_irq_regs(regs); 635 636 if ((unsigned)ipinr < NR_IPI) { 637 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 638 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 639 } 640 641 switch (ipinr) { 642 case IPI_WAKEUP: 643 break; 644 645 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 646 case IPI_TIMER: 647 irq_enter(); 648 tick_receive_broadcast(); 649 irq_exit(); 650 break; 651 #endif 652 653 case IPI_RESCHEDULE: 654 scheduler_ipi(); 655 break; 656 657 case IPI_CALL_FUNC: 658 irq_enter(); 659 generic_smp_call_function_interrupt(); 660 irq_exit(); 661 break; 662 663 case IPI_CPU_STOP: 664 irq_enter(); 665 ipi_cpu_stop(cpu); 666 irq_exit(); 667 break; 668 669 #ifdef CONFIG_IRQ_WORK 670 case IPI_IRQ_WORK: 671 irq_enter(); 672 irq_work_run(); 673 irq_exit(); 674 break; 675 #endif 676 677 case IPI_COMPLETION: 678 irq_enter(); 679 ipi_complete(cpu); 680 irq_exit(); 681 break; 682 683 case IPI_CPU_BACKTRACE: 684 printk_nmi_enter(); 685 irq_enter(); 686 nmi_cpu_backtrace(regs); 687 irq_exit(); 688 printk_nmi_exit(); 689 break; 690 691 default: 692 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 693 cpu, ipinr); 694 break; 695 } 696 697 if ((unsigned)ipinr < NR_IPI) 698 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 699 set_irq_regs(old_regs); 700 } 701 702 void smp_send_reschedule(int cpu) 703 { 704 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 705 } 706 707 void smp_send_stop(void) 708 { 709 unsigned long timeout; 710 struct cpumask mask; 711 712 cpumask_copy(&mask, cpu_online_mask); 713 cpumask_clear_cpu(smp_processor_id(), &mask); 714 if (!cpumask_empty(&mask)) 715 smp_cross_call(&mask, IPI_CPU_STOP); 716 717 /* Wait up to one second for other CPUs to stop */ 718 timeout = USEC_PER_SEC; 719 while (num_online_cpus() > 1 && timeout--) 720 udelay(1); 721 722 if (num_online_cpus() > 1) 723 pr_warn("SMP: failed to stop secondary CPUs\n"); 724 } 725 726 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 727 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 728 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 729 * kdump fails. So split out the panic_smp_self_stop() and add 730 * set_cpu_online(smp_processor_id(), false). 731 */ 732 void panic_smp_self_stop(void) 733 { 734 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 735 smp_processor_id()); 736 set_cpu_online(smp_processor_id(), false); 737 while (1) 738 cpu_relax(); 739 } 740 741 /* 742 * not supported here 743 */ 744 int setup_profiling_timer(unsigned int multiplier) 745 { 746 return -EINVAL; 747 } 748 749 #ifdef CONFIG_CPU_FREQ 750 751 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 752 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 753 static unsigned long global_l_p_j_ref; 754 static unsigned long global_l_p_j_ref_freq; 755 756 static int cpufreq_callback(struct notifier_block *nb, 757 unsigned long val, void *data) 758 { 759 struct cpufreq_freqs *freq = data; 760 struct cpumask *cpus = freq->policy->cpus; 761 int cpu, first = cpumask_first(cpus); 762 unsigned int lpj; 763 764 if (freq->flags & CPUFREQ_CONST_LOOPS) 765 return NOTIFY_OK; 766 767 if (!per_cpu(l_p_j_ref, first)) { 768 for_each_cpu(cpu, cpus) { 769 per_cpu(l_p_j_ref, cpu) = 770 per_cpu(cpu_data, cpu).loops_per_jiffy; 771 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 772 } 773 774 if (!global_l_p_j_ref) { 775 global_l_p_j_ref = loops_per_jiffy; 776 global_l_p_j_ref_freq = freq->old; 777 } 778 } 779 780 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 781 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 782 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 783 global_l_p_j_ref_freq, 784 freq->new); 785 786 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 787 per_cpu(l_p_j_ref_freq, first), freq->new); 788 for_each_cpu(cpu, cpus) 789 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 790 } 791 return NOTIFY_OK; 792 } 793 794 static struct notifier_block cpufreq_notifier = { 795 .notifier_call = cpufreq_callback, 796 }; 797 798 static int __init register_cpufreq_notifier(void) 799 { 800 return cpufreq_register_notifier(&cpufreq_notifier, 801 CPUFREQ_TRANSITION_NOTIFIER); 802 } 803 core_initcall(register_cpufreq_notifier); 804 805 #endif 806 807 static void raise_nmi(cpumask_t *mask) 808 { 809 __smp_cross_call(mask, IPI_CPU_BACKTRACE); 810 } 811 812 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 813 { 814 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 815 } 816