1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 26 #include <asm/atomic.h> 27 #include <asm/cacheflush.h> 28 #include <asm/cpu.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgtable.h> 31 #include <asm/pgalloc.h> 32 #include <asm/processor.h> 33 #include <asm/tlbflush.h> 34 #include <asm/ptrace.h> 35 36 /* 37 * bitmask of present and online CPUs. 38 * The present bitmask indicates that the CPU is physically present. 39 * The online bitmask indicates that the CPU is up and running. 40 */ 41 cpumask_t cpu_possible_map; 42 EXPORT_SYMBOL(cpu_possible_map); 43 cpumask_t cpu_online_map; 44 EXPORT_SYMBOL(cpu_online_map); 45 46 /* 47 * as from 2.5, kernels no longer have an init_tasks structure 48 * so we need some other way of telling a new secondary core 49 * where to place its SVC stack 50 */ 51 struct secondary_data secondary_data; 52 53 /* 54 * structures for inter-processor calls 55 * - A collection of single bit ipi messages. 56 */ 57 struct ipi_data { 58 spinlock_t lock; 59 unsigned long ipi_count; 60 unsigned long bits; 61 }; 62 63 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 64 .lock = SPIN_LOCK_UNLOCKED, 65 }; 66 67 enum ipi_msg_type { 68 IPI_TIMER, 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CALL_FUNC_SINGLE, 72 IPI_CPU_STOP, 73 }; 74 75 int __cpuinit __cpu_up(unsigned int cpu) 76 { 77 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 78 struct task_struct *idle = ci->idle; 79 pgd_t *pgd; 80 pmd_t *pmd; 81 int ret; 82 83 /* 84 * Spawn a new process manually, if not already done. 85 * Grab a pointer to its task struct so we can mess with it 86 */ 87 if (!idle) { 88 idle = fork_idle(cpu); 89 if (IS_ERR(idle)) { 90 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 91 return PTR_ERR(idle); 92 } 93 ci->idle = idle; 94 } 95 96 /* 97 * Allocate initial page tables to allow the new CPU to 98 * enable the MMU safely. This essentially means a set 99 * of our "standard" page tables, with the addition of 100 * a 1:1 mapping for the physical address of the kernel. 101 */ 102 pgd = pgd_alloc(&init_mm); 103 pmd = pmd_offset(pgd, PHYS_OFFSET); 104 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 105 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 106 107 /* 108 * We need to tell the secondary core where to find 109 * its stack and the page tables. 110 */ 111 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 112 secondary_data.pgdir = virt_to_phys(pgd); 113 wmb(); 114 115 /* 116 * Now bring the CPU into our world. 117 */ 118 ret = boot_secondary(cpu, idle); 119 if (ret == 0) { 120 unsigned long timeout; 121 122 /* 123 * CPU was successfully started, wait for it 124 * to come online or time out. 125 */ 126 timeout = jiffies + HZ; 127 while (time_before(jiffies, timeout)) { 128 if (cpu_online(cpu)) 129 break; 130 131 udelay(10); 132 barrier(); 133 } 134 135 if (!cpu_online(cpu)) 136 ret = -EIO; 137 } 138 139 secondary_data.stack = NULL; 140 secondary_data.pgdir = 0; 141 142 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 143 pgd_free(&init_mm, pgd); 144 145 if (ret) { 146 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 147 148 /* 149 * FIXME: We need to clean up the new idle thread. --rmk 150 */ 151 } 152 153 return ret; 154 } 155 156 #ifdef CONFIG_HOTPLUG_CPU 157 /* 158 * __cpu_disable runs on the processor to be shutdown. 159 */ 160 int __cpuexit __cpu_disable(void) 161 { 162 unsigned int cpu = smp_processor_id(); 163 struct task_struct *p; 164 int ret; 165 166 ret = mach_cpu_disable(cpu); 167 if (ret) 168 return ret; 169 170 /* 171 * Take this CPU offline. Once we clear this, we can't return, 172 * and we must not schedule until we're ready to give up the cpu. 173 */ 174 cpu_clear(cpu, cpu_online_map); 175 176 /* 177 * OK - migrate IRQs away from this CPU 178 */ 179 migrate_irqs(); 180 181 /* 182 * Stop the local timer for this CPU. 183 */ 184 local_timer_stop(cpu); 185 186 /* 187 * Flush user cache and TLB mappings, and then remove this CPU 188 * from the vm mask set of all processes. 189 */ 190 flush_cache_all(); 191 local_flush_tlb_all(); 192 193 read_lock(&tasklist_lock); 194 for_each_process(p) { 195 if (p->mm) 196 cpu_clear(cpu, p->mm->cpu_vm_mask); 197 } 198 read_unlock(&tasklist_lock); 199 200 return 0; 201 } 202 203 /* 204 * called on the thread which is asking for a CPU to be shutdown - 205 * waits until shutdown has completed, or it is timed out. 206 */ 207 void __cpuexit __cpu_die(unsigned int cpu) 208 { 209 if (!platform_cpu_kill(cpu)) 210 printk("CPU%u: unable to kill\n", cpu); 211 } 212 213 /* 214 * Called from the idle thread for the CPU which has been shutdown. 215 * 216 * Note that we disable IRQs here, but do not re-enable them 217 * before returning to the caller. This is also the behaviour 218 * of the other hotplug-cpu capable cores, so presumably coming 219 * out of idle fixes this. 220 */ 221 void __cpuexit cpu_die(void) 222 { 223 unsigned int cpu = smp_processor_id(); 224 225 local_irq_disable(); 226 idle_task_exit(); 227 228 /* 229 * actual CPU shutdown procedure is at least platform (if not 230 * CPU) specific 231 */ 232 platform_cpu_die(cpu); 233 234 /* 235 * Do not return to the idle loop - jump back to the secondary 236 * cpu initialisation. There's some initialisation which needs 237 * to be repeated to undo the effects of taking the CPU offline. 238 */ 239 __asm__("mov sp, %0\n" 240 " b secondary_start_kernel" 241 : 242 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 243 } 244 #endif /* CONFIG_HOTPLUG_CPU */ 245 246 /* 247 * This is the secondary CPU boot entry. We're using this CPUs 248 * idle thread stack, but a set of temporary page tables. 249 */ 250 asmlinkage void __cpuinit secondary_start_kernel(void) 251 { 252 struct mm_struct *mm = &init_mm; 253 unsigned int cpu = smp_processor_id(); 254 255 printk("CPU%u: Booted secondary processor\n", cpu); 256 257 /* 258 * All kernel threads share the same mm context; grab a 259 * reference and switch to it. 260 */ 261 atomic_inc(&mm->mm_users); 262 atomic_inc(&mm->mm_count); 263 current->active_mm = mm; 264 cpu_set(cpu, mm->cpu_vm_mask); 265 cpu_switch_mm(mm->pgd, mm); 266 enter_lazy_tlb(mm, current); 267 local_flush_tlb_all(); 268 269 cpu_init(); 270 preempt_disable(); 271 272 /* 273 * Give the platform a chance to do its own initialisation. 274 */ 275 platform_secondary_init(cpu); 276 277 /* 278 * Enable local interrupts. 279 */ 280 local_irq_enable(); 281 local_fiq_enable(); 282 283 /* 284 * Setup local timer for this CPU. 285 */ 286 local_timer_setup(cpu); 287 288 calibrate_delay(); 289 290 smp_store_cpu_info(cpu); 291 292 /* 293 * OK, now it's safe to let the boot CPU continue 294 */ 295 cpu_set(cpu, cpu_online_map); 296 297 /* 298 * OK, it's off to the idle thread for us 299 */ 300 cpu_idle(); 301 } 302 303 /* 304 * Called by both boot and secondaries to move global data into 305 * per-processor storage. 306 */ 307 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 308 { 309 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 310 311 cpu_info->loops_per_jiffy = loops_per_jiffy; 312 } 313 314 void __init smp_cpus_done(unsigned int max_cpus) 315 { 316 int cpu; 317 unsigned long bogosum = 0; 318 319 for_each_online_cpu(cpu) 320 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 321 322 printk(KERN_INFO "SMP: Total of %d processors activated " 323 "(%lu.%02lu BogoMIPS).\n", 324 num_online_cpus(), 325 bogosum / (500000/HZ), 326 (bogosum / (5000/HZ)) % 100); 327 } 328 329 void __init smp_prepare_boot_cpu(void) 330 { 331 unsigned int cpu = smp_processor_id(); 332 333 per_cpu(cpu_data, cpu).idle = current; 334 } 335 336 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 337 { 338 unsigned long flags; 339 unsigned int cpu; 340 341 local_irq_save(flags); 342 343 for_each_cpu_mask(cpu, callmap) { 344 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 345 346 spin_lock(&ipi->lock); 347 ipi->bits |= 1 << msg; 348 spin_unlock(&ipi->lock); 349 } 350 351 /* 352 * Call the platform specific cross-CPU call function. 353 */ 354 smp_cross_call(callmap); 355 356 local_irq_restore(flags); 357 } 358 359 void arch_send_call_function_ipi(cpumask_t mask) 360 { 361 send_ipi_message(mask, IPI_CALL_FUNC); 362 } 363 364 void arch_send_call_function_single_ipi(int cpu) 365 { 366 send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE); 367 } 368 369 void show_ipi_list(struct seq_file *p) 370 { 371 unsigned int cpu; 372 373 seq_puts(p, "IPI:"); 374 375 for_each_present_cpu(cpu) 376 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 377 378 seq_putc(p, '\n'); 379 } 380 381 void show_local_irqs(struct seq_file *p) 382 { 383 unsigned int cpu; 384 385 seq_printf(p, "LOC: "); 386 387 for_each_present_cpu(cpu) 388 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 389 390 seq_putc(p, '\n'); 391 } 392 393 static void ipi_timer(void) 394 { 395 irq_enter(); 396 local_timer_interrupt(); 397 irq_exit(); 398 } 399 400 #ifdef CONFIG_LOCAL_TIMERS 401 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 402 { 403 struct pt_regs *old_regs = set_irq_regs(regs); 404 int cpu = smp_processor_id(); 405 406 if (local_timer_ack()) { 407 irq_stat[cpu].local_timer_irqs++; 408 ipi_timer(); 409 } 410 411 set_irq_regs(old_regs); 412 } 413 #endif 414 415 static DEFINE_SPINLOCK(stop_lock); 416 417 /* 418 * ipi_cpu_stop - handle IPI from smp_send_stop() 419 */ 420 static void ipi_cpu_stop(unsigned int cpu) 421 { 422 spin_lock(&stop_lock); 423 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 424 dump_stack(); 425 spin_unlock(&stop_lock); 426 427 cpu_clear(cpu, cpu_online_map); 428 429 local_fiq_disable(); 430 local_irq_disable(); 431 432 while (1) 433 cpu_relax(); 434 } 435 436 /* 437 * Main handler for inter-processor interrupts 438 * 439 * For ARM, the ipimask now only identifies a single 440 * category of IPI (Bit 1 IPIs have been replaced by a 441 * different mechanism): 442 * 443 * Bit 0 - Inter-processor function call 444 */ 445 asmlinkage void __exception do_IPI(struct pt_regs *regs) 446 { 447 unsigned int cpu = smp_processor_id(); 448 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 449 struct pt_regs *old_regs = set_irq_regs(regs); 450 451 ipi->ipi_count++; 452 453 for (;;) { 454 unsigned long msgs; 455 456 spin_lock(&ipi->lock); 457 msgs = ipi->bits; 458 ipi->bits = 0; 459 spin_unlock(&ipi->lock); 460 461 if (!msgs) 462 break; 463 464 do { 465 unsigned nextmsg; 466 467 nextmsg = msgs & -msgs; 468 msgs &= ~nextmsg; 469 nextmsg = ffz(~nextmsg); 470 471 switch (nextmsg) { 472 case IPI_TIMER: 473 ipi_timer(); 474 break; 475 476 case IPI_RESCHEDULE: 477 /* 478 * nothing more to do - eveything is 479 * done on the interrupt return path 480 */ 481 break; 482 483 case IPI_CALL_FUNC: 484 generic_smp_call_function_interrupt(); 485 break; 486 487 case IPI_CALL_FUNC_SINGLE: 488 generic_smp_call_function_single_interrupt(); 489 break; 490 491 case IPI_CPU_STOP: 492 ipi_cpu_stop(cpu); 493 break; 494 495 default: 496 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 497 cpu, nextmsg); 498 break; 499 } 500 } while (msgs); 501 } 502 503 set_irq_regs(old_regs); 504 } 505 506 void smp_send_reschedule(int cpu) 507 { 508 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 509 } 510 511 void smp_send_timer(void) 512 { 513 cpumask_t mask = cpu_online_map; 514 cpu_clear(smp_processor_id(), mask); 515 send_ipi_message(mask, IPI_TIMER); 516 } 517 518 void smp_timer_broadcast(cpumask_t mask) 519 { 520 send_ipi_message(mask, IPI_TIMER); 521 } 522 523 void smp_send_stop(void) 524 { 525 cpumask_t mask = cpu_online_map; 526 cpu_clear(smp_processor_id(), mask); 527 send_ipi_message(mask, IPI_CPU_STOP); 528 } 529 530 /* 531 * not supported here 532 */ 533 int setup_profiling_timer(unsigned int multiplier) 534 { 535 return -EINVAL; 536 } 537 538 static int 539 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask) 540 { 541 int ret = 0; 542 543 preempt_disable(); 544 545 ret = smp_call_function_mask(mask, func, info, wait); 546 if (cpu_isset(smp_processor_id(), mask)) 547 func(info); 548 549 preempt_enable(); 550 551 return ret; 552 } 553 554 /**********************************************************************/ 555 556 /* 557 * TLB operations 558 */ 559 struct tlb_args { 560 struct vm_area_struct *ta_vma; 561 unsigned long ta_start; 562 unsigned long ta_end; 563 }; 564 565 static inline void ipi_flush_tlb_all(void *ignored) 566 { 567 local_flush_tlb_all(); 568 } 569 570 static inline void ipi_flush_tlb_mm(void *arg) 571 { 572 struct mm_struct *mm = (struct mm_struct *)arg; 573 574 local_flush_tlb_mm(mm); 575 } 576 577 static inline void ipi_flush_tlb_page(void *arg) 578 { 579 struct tlb_args *ta = (struct tlb_args *)arg; 580 581 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 582 } 583 584 static inline void ipi_flush_tlb_kernel_page(void *arg) 585 { 586 struct tlb_args *ta = (struct tlb_args *)arg; 587 588 local_flush_tlb_kernel_page(ta->ta_start); 589 } 590 591 static inline void ipi_flush_tlb_range(void *arg) 592 { 593 struct tlb_args *ta = (struct tlb_args *)arg; 594 595 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 596 } 597 598 static inline void ipi_flush_tlb_kernel_range(void *arg) 599 { 600 struct tlb_args *ta = (struct tlb_args *)arg; 601 602 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 603 } 604 605 void flush_tlb_all(void) 606 { 607 on_each_cpu(ipi_flush_tlb_all, NULL, 1); 608 } 609 610 void flush_tlb_mm(struct mm_struct *mm) 611 { 612 cpumask_t mask = mm->cpu_vm_mask; 613 614 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask); 615 } 616 617 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 618 { 619 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 620 struct tlb_args ta; 621 622 ta.ta_vma = vma; 623 ta.ta_start = uaddr; 624 625 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask); 626 } 627 628 void flush_tlb_kernel_page(unsigned long kaddr) 629 { 630 struct tlb_args ta; 631 632 ta.ta_start = kaddr; 633 634 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1); 635 } 636 637 void flush_tlb_range(struct vm_area_struct *vma, 638 unsigned long start, unsigned long end) 639 { 640 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 641 struct tlb_args ta; 642 643 ta.ta_vma = vma; 644 ta.ta_start = start; 645 ta.ta_end = end; 646 647 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask); 648 } 649 650 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 651 { 652 struct tlb_args ta; 653 654 ta.ta_start = start; 655 ta.ta_end = end; 656 657 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); 658 } 659