xref: /openbmc/linux/arch/arm/kernel/smp.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cpu.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/ptrace.h>
35 
36 /*
37  * bitmask of present and online CPUs.
38  * The present bitmask indicates that the CPU is physically present.
39  * The online bitmask indicates that the CPU is up and running.
40  */
41 cpumask_t cpu_possible_map;
42 EXPORT_SYMBOL(cpu_possible_map);
43 cpumask_t cpu_online_map;
44 EXPORT_SYMBOL(cpu_online_map);
45 
46 /*
47  * as from 2.5, kernels no longer have an init_tasks structure
48  * so we need some other way of telling a new secondary core
49  * where to place its SVC stack
50  */
51 struct secondary_data secondary_data;
52 
53 /*
54  * structures for inter-processor calls
55  * - A collection of single bit ipi messages.
56  */
57 struct ipi_data {
58 	spinlock_t lock;
59 	unsigned long ipi_count;
60 	unsigned long bits;
61 };
62 
63 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
64 	.lock	= SPIN_LOCK_UNLOCKED,
65 };
66 
67 enum ipi_msg_type {
68 	IPI_TIMER,
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CALL_FUNC_SINGLE,
72 	IPI_CPU_STOP,
73 };
74 
75 int __cpuinit __cpu_up(unsigned int cpu)
76 {
77 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
78 	struct task_struct *idle = ci->idle;
79 	pgd_t *pgd;
80 	pmd_t *pmd;
81 	int ret;
82 
83 	/*
84 	 * Spawn a new process manually, if not already done.
85 	 * Grab a pointer to its task struct so we can mess with it
86 	 */
87 	if (!idle) {
88 		idle = fork_idle(cpu);
89 		if (IS_ERR(idle)) {
90 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
91 			return PTR_ERR(idle);
92 		}
93 		ci->idle = idle;
94 	}
95 
96 	/*
97 	 * Allocate initial page tables to allow the new CPU to
98 	 * enable the MMU safely.  This essentially means a set
99 	 * of our "standard" page tables, with the addition of
100 	 * a 1:1 mapping for the physical address of the kernel.
101 	 */
102 	pgd = pgd_alloc(&init_mm);
103 	pmd = pmd_offset(pgd, PHYS_OFFSET);
104 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
105 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
106 
107 	/*
108 	 * We need to tell the secondary core where to find
109 	 * its stack and the page tables.
110 	 */
111 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
112 	secondary_data.pgdir = virt_to_phys(pgd);
113 	wmb();
114 
115 	/*
116 	 * Now bring the CPU into our world.
117 	 */
118 	ret = boot_secondary(cpu, idle);
119 	if (ret == 0) {
120 		unsigned long timeout;
121 
122 		/*
123 		 * CPU was successfully started, wait for it
124 		 * to come online or time out.
125 		 */
126 		timeout = jiffies + HZ;
127 		while (time_before(jiffies, timeout)) {
128 			if (cpu_online(cpu))
129 				break;
130 
131 			udelay(10);
132 			barrier();
133 		}
134 
135 		if (!cpu_online(cpu))
136 			ret = -EIO;
137 	}
138 
139 	secondary_data.stack = NULL;
140 	secondary_data.pgdir = 0;
141 
142 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
143 	pgd_free(&init_mm, pgd);
144 
145 	if (ret) {
146 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
147 
148 		/*
149 		 * FIXME: We need to clean up the new idle thread. --rmk
150 		 */
151 	}
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_HOTPLUG_CPU
157 /*
158  * __cpu_disable runs on the processor to be shutdown.
159  */
160 int __cpuexit __cpu_disable(void)
161 {
162 	unsigned int cpu = smp_processor_id();
163 	struct task_struct *p;
164 	int ret;
165 
166 	ret = mach_cpu_disable(cpu);
167 	if (ret)
168 		return ret;
169 
170 	/*
171 	 * Take this CPU offline.  Once we clear this, we can't return,
172 	 * and we must not schedule until we're ready to give up the cpu.
173 	 */
174 	cpu_clear(cpu, cpu_online_map);
175 
176 	/*
177 	 * OK - migrate IRQs away from this CPU
178 	 */
179 	migrate_irqs();
180 
181 	/*
182 	 * Stop the local timer for this CPU.
183 	 */
184 	local_timer_stop(cpu);
185 
186 	/*
187 	 * Flush user cache and TLB mappings, and then remove this CPU
188 	 * from the vm mask set of all processes.
189 	 */
190 	flush_cache_all();
191 	local_flush_tlb_all();
192 
193 	read_lock(&tasklist_lock);
194 	for_each_process(p) {
195 		if (p->mm)
196 			cpu_clear(cpu, p->mm->cpu_vm_mask);
197 	}
198 	read_unlock(&tasklist_lock);
199 
200 	return 0;
201 }
202 
203 /*
204  * called on the thread which is asking for a CPU to be shutdown -
205  * waits until shutdown has completed, or it is timed out.
206  */
207 void __cpuexit __cpu_die(unsigned int cpu)
208 {
209 	if (!platform_cpu_kill(cpu))
210 		printk("CPU%u: unable to kill\n", cpu);
211 }
212 
213 /*
214  * Called from the idle thread for the CPU which has been shutdown.
215  *
216  * Note that we disable IRQs here, but do not re-enable them
217  * before returning to the caller. This is also the behaviour
218  * of the other hotplug-cpu capable cores, so presumably coming
219  * out of idle fixes this.
220  */
221 void __cpuexit cpu_die(void)
222 {
223 	unsigned int cpu = smp_processor_id();
224 
225 	local_irq_disable();
226 	idle_task_exit();
227 
228 	/*
229 	 * actual CPU shutdown procedure is at least platform (if not
230 	 * CPU) specific
231 	 */
232 	platform_cpu_die(cpu);
233 
234 	/*
235 	 * Do not return to the idle loop - jump back to the secondary
236 	 * cpu initialisation.  There's some initialisation which needs
237 	 * to be repeated to undo the effects of taking the CPU offline.
238 	 */
239 	__asm__("mov	sp, %0\n"
240 	"	b	secondary_start_kernel"
241 		:
242 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
243 }
244 #endif /* CONFIG_HOTPLUG_CPU */
245 
246 /*
247  * This is the secondary CPU boot entry.  We're using this CPUs
248  * idle thread stack, but a set of temporary page tables.
249  */
250 asmlinkage void __cpuinit secondary_start_kernel(void)
251 {
252 	struct mm_struct *mm = &init_mm;
253 	unsigned int cpu = smp_processor_id();
254 
255 	printk("CPU%u: Booted secondary processor\n", cpu);
256 
257 	/*
258 	 * All kernel threads share the same mm context; grab a
259 	 * reference and switch to it.
260 	 */
261 	atomic_inc(&mm->mm_users);
262 	atomic_inc(&mm->mm_count);
263 	current->active_mm = mm;
264 	cpu_set(cpu, mm->cpu_vm_mask);
265 	cpu_switch_mm(mm->pgd, mm);
266 	enter_lazy_tlb(mm, current);
267 	local_flush_tlb_all();
268 
269 	cpu_init();
270 	preempt_disable();
271 
272 	/*
273 	 * Give the platform a chance to do its own initialisation.
274 	 */
275 	platform_secondary_init(cpu);
276 
277 	/*
278 	 * Enable local interrupts.
279 	 */
280 	local_irq_enable();
281 	local_fiq_enable();
282 
283 	/*
284 	 * Setup local timer for this CPU.
285 	 */
286 	local_timer_setup(cpu);
287 
288 	calibrate_delay();
289 
290 	smp_store_cpu_info(cpu);
291 
292 	/*
293 	 * OK, now it's safe to let the boot CPU continue
294 	 */
295 	cpu_set(cpu, cpu_online_map);
296 
297 	/*
298 	 * OK, it's off to the idle thread for us
299 	 */
300 	cpu_idle();
301 }
302 
303 /*
304  * Called by both boot and secondaries to move global data into
305  * per-processor storage.
306  */
307 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
308 {
309 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
310 
311 	cpu_info->loops_per_jiffy = loops_per_jiffy;
312 }
313 
314 void __init smp_cpus_done(unsigned int max_cpus)
315 {
316 	int cpu;
317 	unsigned long bogosum = 0;
318 
319 	for_each_online_cpu(cpu)
320 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
321 
322 	printk(KERN_INFO "SMP: Total of %d processors activated "
323 	       "(%lu.%02lu BogoMIPS).\n",
324 	       num_online_cpus(),
325 	       bogosum / (500000/HZ),
326 	       (bogosum / (5000/HZ)) % 100);
327 }
328 
329 void __init smp_prepare_boot_cpu(void)
330 {
331 	unsigned int cpu = smp_processor_id();
332 
333 	per_cpu(cpu_data, cpu).idle = current;
334 }
335 
336 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
337 {
338 	unsigned long flags;
339 	unsigned int cpu;
340 
341 	local_irq_save(flags);
342 
343 	for_each_cpu_mask(cpu, callmap) {
344 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
345 
346 		spin_lock(&ipi->lock);
347 		ipi->bits |= 1 << msg;
348 		spin_unlock(&ipi->lock);
349 	}
350 
351 	/*
352 	 * Call the platform specific cross-CPU call function.
353 	 */
354 	smp_cross_call(callmap);
355 
356 	local_irq_restore(flags);
357 }
358 
359 void arch_send_call_function_ipi(cpumask_t mask)
360 {
361 	send_ipi_message(mask, IPI_CALL_FUNC);
362 }
363 
364 void arch_send_call_function_single_ipi(int cpu)
365 {
366 	send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
367 }
368 
369 void show_ipi_list(struct seq_file *p)
370 {
371 	unsigned int cpu;
372 
373 	seq_puts(p, "IPI:");
374 
375 	for_each_present_cpu(cpu)
376 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
377 
378 	seq_putc(p, '\n');
379 }
380 
381 void show_local_irqs(struct seq_file *p)
382 {
383 	unsigned int cpu;
384 
385 	seq_printf(p, "LOC: ");
386 
387 	for_each_present_cpu(cpu)
388 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
389 
390 	seq_putc(p, '\n');
391 }
392 
393 static void ipi_timer(void)
394 {
395 	irq_enter();
396 	local_timer_interrupt();
397 	irq_exit();
398 }
399 
400 #ifdef CONFIG_LOCAL_TIMERS
401 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
402 {
403 	struct pt_regs *old_regs = set_irq_regs(regs);
404 	int cpu = smp_processor_id();
405 
406 	if (local_timer_ack()) {
407 		irq_stat[cpu].local_timer_irqs++;
408 		ipi_timer();
409 	}
410 
411 	set_irq_regs(old_regs);
412 }
413 #endif
414 
415 static DEFINE_SPINLOCK(stop_lock);
416 
417 /*
418  * ipi_cpu_stop - handle IPI from smp_send_stop()
419  */
420 static void ipi_cpu_stop(unsigned int cpu)
421 {
422 	spin_lock(&stop_lock);
423 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
424 	dump_stack();
425 	spin_unlock(&stop_lock);
426 
427 	cpu_clear(cpu, cpu_online_map);
428 
429 	local_fiq_disable();
430 	local_irq_disable();
431 
432 	while (1)
433 		cpu_relax();
434 }
435 
436 /*
437  * Main handler for inter-processor interrupts
438  *
439  * For ARM, the ipimask now only identifies a single
440  * category of IPI (Bit 1 IPIs have been replaced by a
441  * different mechanism):
442  *
443  *  Bit 0 - Inter-processor function call
444  */
445 asmlinkage void __exception do_IPI(struct pt_regs *regs)
446 {
447 	unsigned int cpu = smp_processor_id();
448 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
449 	struct pt_regs *old_regs = set_irq_regs(regs);
450 
451 	ipi->ipi_count++;
452 
453 	for (;;) {
454 		unsigned long msgs;
455 
456 		spin_lock(&ipi->lock);
457 		msgs = ipi->bits;
458 		ipi->bits = 0;
459 		spin_unlock(&ipi->lock);
460 
461 		if (!msgs)
462 			break;
463 
464 		do {
465 			unsigned nextmsg;
466 
467 			nextmsg = msgs & -msgs;
468 			msgs &= ~nextmsg;
469 			nextmsg = ffz(~nextmsg);
470 
471 			switch (nextmsg) {
472 			case IPI_TIMER:
473 				ipi_timer();
474 				break;
475 
476 			case IPI_RESCHEDULE:
477 				/*
478 				 * nothing more to do - eveything is
479 				 * done on the interrupt return path
480 				 */
481 				break;
482 
483 			case IPI_CALL_FUNC:
484 				generic_smp_call_function_interrupt();
485 				break;
486 
487 			case IPI_CALL_FUNC_SINGLE:
488 				generic_smp_call_function_single_interrupt();
489 				break;
490 
491 			case IPI_CPU_STOP:
492 				ipi_cpu_stop(cpu);
493 				break;
494 
495 			default:
496 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
497 				       cpu, nextmsg);
498 				break;
499 			}
500 		} while (msgs);
501 	}
502 
503 	set_irq_regs(old_regs);
504 }
505 
506 void smp_send_reschedule(int cpu)
507 {
508 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
509 }
510 
511 void smp_send_timer(void)
512 {
513 	cpumask_t mask = cpu_online_map;
514 	cpu_clear(smp_processor_id(), mask);
515 	send_ipi_message(mask, IPI_TIMER);
516 }
517 
518 void smp_timer_broadcast(cpumask_t mask)
519 {
520 	send_ipi_message(mask, IPI_TIMER);
521 }
522 
523 void smp_send_stop(void)
524 {
525 	cpumask_t mask = cpu_online_map;
526 	cpu_clear(smp_processor_id(), mask);
527 	send_ipi_message(mask, IPI_CPU_STOP);
528 }
529 
530 /*
531  * not supported here
532  */
533 int setup_profiling_timer(unsigned int multiplier)
534 {
535 	return -EINVAL;
536 }
537 
538 static int
539 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask)
540 {
541 	int ret = 0;
542 
543 	preempt_disable();
544 
545 	ret = smp_call_function_mask(mask, func, info, wait);
546 	if (cpu_isset(smp_processor_id(), mask))
547 		func(info);
548 
549 	preempt_enable();
550 
551 	return ret;
552 }
553 
554 /**********************************************************************/
555 
556 /*
557  * TLB operations
558  */
559 struct tlb_args {
560 	struct vm_area_struct *ta_vma;
561 	unsigned long ta_start;
562 	unsigned long ta_end;
563 };
564 
565 static inline void ipi_flush_tlb_all(void *ignored)
566 {
567 	local_flush_tlb_all();
568 }
569 
570 static inline void ipi_flush_tlb_mm(void *arg)
571 {
572 	struct mm_struct *mm = (struct mm_struct *)arg;
573 
574 	local_flush_tlb_mm(mm);
575 }
576 
577 static inline void ipi_flush_tlb_page(void *arg)
578 {
579 	struct tlb_args *ta = (struct tlb_args *)arg;
580 
581 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
582 }
583 
584 static inline void ipi_flush_tlb_kernel_page(void *arg)
585 {
586 	struct tlb_args *ta = (struct tlb_args *)arg;
587 
588 	local_flush_tlb_kernel_page(ta->ta_start);
589 }
590 
591 static inline void ipi_flush_tlb_range(void *arg)
592 {
593 	struct tlb_args *ta = (struct tlb_args *)arg;
594 
595 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
596 }
597 
598 static inline void ipi_flush_tlb_kernel_range(void *arg)
599 {
600 	struct tlb_args *ta = (struct tlb_args *)arg;
601 
602 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
603 }
604 
605 void flush_tlb_all(void)
606 {
607 	on_each_cpu(ipi_flush_tlb_all, NULL, 1);
608 }
609 
610 void flush_tlb_mm(struct mm_struct *mm)
611 {
612 	cpumask_t mask = mm->cpu_vm_mask;
613 
614 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask);
615 }
616 
617 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
618 {
619 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
620 	struct tlb_args ta;
621 
622 	ta.ta_vma = vma;
623 	ta.ta_start = uaddr;
624 
625 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask);
626 }
627 
628 void flush_tlb_kernel_page(unsigned long kaddr)
629 {
630 	struct tlb_args ta;
631 
632 	ta.ta_start = kaddr;
633 
634 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
635 }
636 
637 void flush_tlb_range(struct vm_area_struct *vma,
638                      unsigned long start, unsigned long end)
639 {
640 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
641 	struct tlb_args ta;
642 
643 	ta.ta_vma = vma;
644 	ta.ta_start = start;
645 	ta.ta_end = end;
646 
647 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask);
648 }
649 
650 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
651 {
652 	struct tlb_args ta;
653 
654 	ta.ta_start = start;
655 	ta.ta_end = end;
656 
657 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
658 }
659