1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 29 #include <linux/atomic.h> 30 #include <asm/smp.h> 31 #include <asm/cacheflush.h> 32 #include <asm/cpu.h> 33 #include <asm/cputype.h> 34 #include <asm/exception.h> 35 #include <asm/idmap.h> 36 #include <asm/topology.h> 37 #include <asm/mmu_context.h> 38 #include <asm/pgtable.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sections.h> 42 #include <asm/tlbflush.h> 43 #include <asm/ptrace.h> 44 #include <asm/localtimer.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 49 /* 50 * as from 2.5, kernels no longer have an init_tasks structure 51 * so we need some other way of telling a new secondary core 52 * where to place its SVC stack 53 */ 54 struct secondary_data secondary_data; 55 56 /* 57 * control for which core is the next to come out of the secondary 58 * boot "holding pen" 59 */ 60 volatile int __cpuinitdata pen_release = -1; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CALL_FUNC_SINGLE, 68 IPI_CPU_STOP, 69 }; 70 71 static DECLARE_COMPLETION(cpu_running); 72 73 static struct smp_operations smp_ops; 74 75 void __init smp_set_ops(struct smp_operations *ops) 76 { 77 if (ops) 78 smp_ops = *ops; 79 }; 80 81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle) 82 { 83 int ret; 84 85 /* 86 * We need to tell the secondary core where to find 87 * its stack and the page tables. 88 */ 89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 90 secondary_data.pgdir = virt_to_phys(idmap_pgd); 91 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir); 92 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 93 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 94 95 /* 96 * Now bring the CPU into our world. 97 */ 98 ret = boot_secondary(cpu, idle); 99 if (ret == 0) { 100 /* 101 * CPU was successfully started, wait for it 102 * to come online or time out. 103 */ 104 wait_for_completion_timeout(&cpu_running, 105 msecs_to_jiffies(1000)); 106 107 if (!cpu_online(cpu)) { 108 pr_crit("CPU%u: failed to come online\n", cpu); 109 ret = -EIO; 110 } 111 } else { 112 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 113 } 114 115 secondary_data.stack = NULL; 116 secondary_data.pgdir = 0; 117 118 return ret; 119 } 120 121 /* platform specific SMP operations */ 122 void __init smp_init_cpus(void) 123 { 124 if (smp_ops.smp_init_cpus) 125 smp_ops.smp_init_cpus(); 126 } 127 128 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) 129 { 130 if (smp_ops.smp_boot_secondary) 131 return smp_ops.smp_boot_secondary(cpu, idle); 132 return -ENOSYS; 133 } 134 135 #ifdef CONFIG_HOTPLUG_CPU 136 static void percpu_timer_stop(void); 137 138 static int platform_cpu_kill(unsigned int cpu) 139 { 140 if (smp_ops.cpu_kill) 141 return smp_ops.cpu_kill(cpu); 142 return 1; 143 } 144 145 static int platform_cpu_disable(unsigned int cpu) 146 { 147 if (smp_ops.cpu_disable) 148 return smp_ops.cpu_disable(cpu); 149 150 /* 151 * By default, allow disabling all CPUs except the first one, 152 * since this is special on a lot of platforms, e.g. because 153 * of clock tick interrupts. 154 */ 155 return cpu == 0 ? -EPERM : 0; 156 } 157 /* 158 * __cpu_disable runs on the processor to be shutdown. 159 */ 160 int __cpuinit __cpu_disable(void) 161 { 162 unsigned int cpu = smp_processor_id(); 163 int ret; 164 165 ret = platform_cpu_disable(cpu); 166 if (ret) 167 return ret; 168 169 /* 170 * Take this CPU offline. Once we clear this, we can't return, 171 * and we must not schedule until we're ready to give up the cpu. 172 */ 173 set_cpu_online(cpu, false); 174 175 /* 176 * OK - migrate IRQs away from this CPU 177 */ 178 migrate_irqs(); 179 180 /* 181 * Stop the local timer for this CPU. 182 */ 183 percpu_timer_stop(); 184 185 /* 186 * Flush user cache and TLB mappings, and then remove this CPU 187 * from the vm mask set of all processes. 188 * 189 * Caches are flushed to the Level of Unification Inner Shareable 190 * to write-back dirty lines to unified caches shared by all CPUs. 191 */ 192 flush_cache_louis(); 193 local_flush_tlb_all(); 194 195 clear_tasks_mm_cpumask(cpu); 196 197 return 0; 198 } 199 200 static DECLARE_COMPLETION(cpu_died); 201 202 /* 203 * called on the thread which is asking for a CPU to be shutdown - 204 * waits until shutdown has completed, or it is timed out. 205 */ 206 void __cpuinit __cpu_die(unsigned int cpu) 207 { 208 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 209 pr_err("CPU%u: cpu didn't die\n", cpu); 210 return; 211 } 212 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 213 214 /* 215 * platform_cpu_kill() is generally expected to do the powering off 216 * and/or cutting of clocks to the dying CPU. Optionally, this may 217 * be done by the CPU which is dying in preference to supporting 218 * this call, but that means there is _no_ synchronisation between 219 * the requesting CPU and the dying CPU actually losing power. 220 */ 221 if (!platform_cpu_kill(cpu)) 222 printk("CPU%u: unable to kill\n", cpu); 223 } 224 225 /* 226 * Called from the idle thread for the CPU which has been shutdown. 227 * 228 * Note that we disable IRQs here, but do not re-enable them 229 * before returning to the caller. This is also the behaviour 230 * of the other hotplug-cpu capable cores, so presumably coming 231 * out of idle fixes this. 232 */ 233 void __ref cpu_die(void) 234 { 235 unsigned int cpu = smp_processor_id(); 236 237 idle_task_exit(); 238 239 local_irq_disable(); 240 241 /* 242 * Flush the data out of the L1 cache for this CPU. This must be 243 * before the completion to ensure that data is safely written out 244 * before platform_cpu_kill() gets called - which may disable 245 * *this* CPU and power down its cache. 246 */ 247 flush_cache_louis(); 248 249 /* 250 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 251 * this returns, power and/or clocks can be removed at any point 252 * from this CPU and its cache by platform_cpu_kill(). 253 */ 254 complete(&cpu_died); 255 256 /* 257 * Ensure that the cache lines associated with that completion are 258 * written out. This covers the case where _this_ CPU is doing the 259 * powering down, to ensure that the completion is visible to the 260 * CPU waiting for this one. 261 */ 262 flush_cache_louis(); 263 264 /* 265 * The actual CPU shutdown procedure is at least platform (if not 266 * CPU) specific. This may remove power, or it may simply spin. 267 * 268 * Platforms are generally expected *NOT* to return from this call, 269 * although there are some which do because they have no way to 270 * power down the CPU. These platforms are the _only_ reason we 271 * have a return path which uses the fragment of assembly below. 272 * 273 * The return path should not be used for platforms which can 274 * power off the CPU. 275 */ 276 if (smp_ops.cpu_die) 277 smp_ops.cpu_die(cpu); 278 279 /* 280 * Do not return to the idle loop - jump back to the secondary 281 * cpu initialisation. There's some initialisation which needs 282 * to be repeated to undo the effects of taking the CPU offline. 283 */ 284 __asm__("mov sp, %0\n" 285 " mov fp, #0\n" 286 " b secondary_start_kernel" 287 : 288 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 289 } 290 #endif /* CONFIG_HOTPLUG_CPU */ 291 292 /* 293 * Called by both boot and secondaries to move global data into 294 * per-processor storage. 295 */ 296 static void __cpuinit smp_store_cpu_info(unsigned int cpuid) 297 { 298 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 299 300 cpu_info->loops_per_jiffy = loops_per_jiffy; 301 cpu_info->cpuid = read_cpuid_id(); 302 303 store_cpu_topology(cpuid); 304 } 305 306 static void percpu_timer_setup(void); 307 308 /* 309 * This is the secondary CPU boot entry. We're using this CPUs 310 * idle thread stack, but a set of temporary page tables. 311 */ 312 asmlinkage void __cpuinit secondary_start_kernel(void) 313 { 314 struct mm_struct *mm = &init_mm; 315 unsigned int cpu; 316 317 /* 318 * The identity mapping is uncached (strongly ordered), so 319 * switch away from it before attempting any exclusive accesses. 320 */ 321 cpu_switch_mm(mm->pgd, mm); 322 local_flush_bp_all(); 323 enter_lazy_tlb(mm, current); 324 local_flush_tlb_all(); 325 326 /* 327 * All kernel threads share the same mm context; grab a 328 * reference and switch to it. 329 */ 330 cpu = smp_processor_id(); 331 atomic_inc(&mm->mm_count); 332 current->active_mm = mm; 333 cpumask_set_cpu(cpu, mm_cpumask(mm)); 334 335 cpu_init(); 336 337 printk("CPU%u: Booted secondary processor\n", cpu); 338 339 preempt_disable(); 340 trace_hardirqs_off(); 341 342 /* 343 * Give the platform a chance to do its own initialisation. 344 */ 345 if (smp_ops.smp_secondary_init) 346 smp_ops.smp_secondary_init(cpu); 347 348 notify_cpu_starting(cpu); 349 350 calibrate_delay(); 351 352 smp_store_cpu_info(cpu); 353 354 /* 355 * OK, now it's safe to let the boot CPU continue. Wait for 356 * the CPU migration code to notice that the CPU is online 357 * before we continue - which happens after __cpu_up returns. 358 */ 359 set_cpu_online(cpu, true); 360 complete(&cpu_running); 361 362 /* 363 * Setup the percpu timer for this CPU. 364 */ 365 percpu_timer_setup(); 366 367 local_irq_enable(); 368 local_fiq_enable(); 369 370 /* 371 * OK, it's off to the idle thread for us 372 */ 373 cpu_startup_entry(CPUHP_ONLINE); 374 } 375 376 void __init smp_cpus_done(unsigned int max_cpus) 377 { 378 int cpu; 379 unsigned long bogosum = 0; 380 381 for_each_online_cpu(cpu) 382 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 383 384 printk(KERN_INFO "SMP: Total of %d processors activated " 385 "(%lu.%02lu BogoMIPS).\n", 386 num_online_cpus(), 387 bogosum / (500000/HZ), 388 (bogosum / (5000/HZ)) % 100); 389 390 hyp_mode_check(); 391 } 392 393 void __init smp_prepare_boot_cpu(void) 394 { 395 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 396 } 397 398 void __init smp_prepare_cpus(unsigned int max_cpus) 399 { 400 unsigned int ncores = num_possible_cpus(); 401 402 init_cpu_topology(); 403 404 smp_store_cpu_info(smp_processor_id()); 405 406 /* 407 * are we trying to boot more cores than exist? 408 */ 409 if (max_cpus > ncores) 410 max_cpus = ncores; 411 if (ncores > 1 && max_cpus) { 412 /* 413 * Enable the local timer or broadcast device for the 414 * boot CPU, but only if we have more than one CPU. 415 */ 416 percpu_timer_setup(); 417 418 /* 419 * Initialise the present map, which describes the set of CPUs 420 * actually populated at the present time. A platform should 421 * re-initialize the map in the platforms smp_prepare_cpus() 422 * if present != possible (e.g. physical hotplug). 423 */ 424 init_cpu_present(cpu_possible_mask); 425 426 /* 427 * Initialise the SCU if there are more than one CPU 428 * and let them know where to start. 429 */ 430 if (smp_ops.smp_prepare_cpus) 431 smp_ops.smp_prepare_cpus(max_cpus); 432 } 433 } 434 435 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 436 437 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 438 { 439 if (!smp_cross_call) 440 smp_cross_call = fn; 441 } 442 443 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 444 { 445 smp_cross_call(mask, IPI_CALL_FUNC); 446 } 447 448 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 449 { 450 smp_cross_call(mask, IPI_WAKEUP); 451 } 452 453 void arch_send_call_function_single_ipi(int cpu) 454 { 455 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 456 } 457 458 static const char *ipi_types[NR_IPI] = { 459 #define S(x,s) [x] = s 460 S(IPI_WAKEUP, "CPU wakeup interrupts"), 461 S(IPI_TIMER, "Timer broadcast interrupts"), 462 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 463 S(IPI_CALL_FUNC, "Function call interrupts"), 464 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 465 S(IPI_CPU_STOP, "CPU stop interrupts"), 466 }; 467 468 void show_ipi_list(struct seq_file *p, int prec) 469 { 470 unsigned int cpu, i; 471 472 for (i = 0; i < NR_IPI; i++) { 473 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 474 475 for_each_online_cpu(cpu) 476 seq_printf(p, "%10u ", 477 __get_irq_stat(cpu, ipi_irqs[i])); 478 479 seq_printf(p, " %s\n", ipi_types[i]); 480 } 481 } 482 483 u64 smp_irq_stat_cpu(unsigned int cpu) 484 { 485 u64 sum = 0; 486 int i; 487 488 for (i = 0; i < NR_IPI; i++) 489 sum += __get_irq_stat(cpu, ipi_irqs[i]); 490 491 return sum; 492 } 493 494 /* 495 * Timer (local or broadcast) support 496 */ 497 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent); 498 499 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 500 void tick_broadcast(const struct cpumask *mask) 501 { 502 smp_cross_call(mask, IPI_TIMER); 503 } 504 #endif 505 506 static void broadcast_timer_set_mode(enum clock_event_mode mode, 507 struct clock_event_device *evt) 508 { 509 } 510 511 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt) 512 { 513 evt->name = "dummy_timer"; 514 evt->features = CLOCK_EVT_FEAT_ONESHOT | 515 CLOCK_EVT_FEAT_PERIODIC | 516 CLOCK_EVT_FEAT_DUMMY; 517 evt->rating = 100; 518 evt->mult = 1; 519 evt->set_mode = broadcast_timer_set_mode; 520 521 clockevents_register_device(evt); 522 } 523 524 static struct local_timer_ops *lt_ops; 525 526 #ifdef CONFIG_LOCAL_TIMERS 527 int local_timer_register(struct local_timer_ops *ops) 528 { 529 if (!is_smp() || !setup_max_cpus) 530 return -ENXIO; 531 532 if (lt_ops) 533 return -EBUSY; 534 535 lt_ops = ops; 536 return 0; 537 } 538 #endif 539 540 static void __cpuinit percpu_timer_setup(void) 541 { 542 unsigned int cpu = smp_processor_id(); 543 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 544 545 evt->cpumask = cpumask_of(cpu); 546 547 if (!lt_ops || lt_ops->setup(evt)) 548 broadcast_timer_setup(evt); 549 } 550 551 #ifdef CONFIG_HOTPLUG_CPU 552 /* 553 * The generic clock events code purposely does not stop the local timer 554 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it 555 * manually here. 556 */ 557 static void percpu_timer_stop(void) 558 { 559 unsigned int cpu = smp_processor_id(); 560 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu); 561 562 if (lt_ops) 563 lt_ops->stop(evt); 564 } 565 #endif 566 567 static DEFINE_RAW_SPINLOCK(stop_lock); 568 569 /* 570 * ipi_cpu_stop - handle IPI from smp_send_stop() 571 */ 572 static void ipi_cpu_stop(unsigned int cpu) 573 { 574 if (system_state == SYSTEM_BOOTING || 575 system_state == SYSTEM_RUNNING) { 576 raw_spin_lock(&stop_lock); 577 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 578 dump_stack(); 579 raw_spin_unlock(&stop_lock); 580 } 581 582 set_cpu_online(cpu, false); 583 584 local_fiq_disable(); 585 local_irq_disable(); 586 587 while (1) 588 cpu_relax(); 589 } 590 591 /* 592 * Main handler for inter-processor interrupts 593 */ 594 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 595 { 596 handle_IPI(ipinr, regs); 597 } 598 599 void handle_IPI(int ipinr, struct pt_regs *regs) 600 { 601 unsigned int cpu = smp_processor_id(); 602 struct pt_regs *old_regs = set_irq_regs(regs); 603 604 if (ipinr < NR_IPI) 605 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 606 607 switch (ipinr) { 608 case IPI_WAKEUP: 609 break; 610 611 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 612 case IPI_TIMER: 613 irq_enter(); 614 tick_receive_broadcast(); 615 irq_exit(); 616 break; 617 #endif 618 619 case IPI_RESCHEDULE: 620 scheduler_ipi(); 621 break; 622 623 case IPI_CALL_FUNC: 624 irq_enter(); 625 generic_smp_call_function_interrupt(); 626 irq_exit(); 627 break; 628 629 case IPI_CALL_FUNC_SINGLE: 630 irq_enter(); 631 generic_smp_call_function_single_interrupt(); 632 irq_exit(); 633 break; 634 635 case IPI_CPU_STOP: 636 irq_enter(); 637 ipi_cpu_stop(cpu); 638 irq_exit(); 639 break; 640 641 default: 642 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 643 cpu, ipinr); 644 break; 645 } 646 set_irq_regs(old_regs); 647 } 648 649 void smp_send_reschedule(int cpu) 650 { 651 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 652 } 653 654 #ifdef CONFIG_HOTPLUG_CPU 655 static void smp_kill_cpus(cpumask_t *mask) 656 { 657 unsigned int cpu; 658 for_each_cpu(cpu, mask) 659 platform_cpu_kill(cpu); 660 } 661 #else 662 static void smp_kill_cpus(cpumask_t *mask) { } 663 #endif 664 665 void smp_send_stop(void) 666 { 667 unsigned long timeout; 668 struct cpumask mask; 669 670 cpumask_copy(&mask, cpu_online_mask); 671 cpumask_clear_cpu(smp_processor_id(), &mask); 672 if (!cpumask_empty(&mask)) 673 smp_cross_call(&mask, IPI_CPU_STOP); 674 675 /* Wait up to one second for other CPUs to stop */ 676 timeout = USEC_PER_SEC; 677 while (num_online_cpus() > 1 && timeout--) 678 udelay(1); 679 680 if (num_online_cpus() > 1) 681 pr_warning("SMP: failed to stop secondary CPUs\n"); 682 683 smp_kill_cpus(&mask); 684 } 685 686 /* 687 * not supported here 688 */ 689 int setup_profiling_timer(unsigned int multiplier) 690 { 691 return -EINVAL; 692 } 693 694 #ifdef CONFIG_CPU_FREQ 695 696 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 697 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 698 static unsigned long global_l_p_j_ref; 699 static unsigned long global_l_p_j_ref_freq; 700 701 static int cpufreq_callback(struct notifier_block *nb, 702 unsigned long val, void *data) 703 { 704 struct cpufreq_freqs *freq = data; 705 int cpu = freq->cpu; 706 707 if (freq->flags & CPUFREQ_CONST_LOOPS) 708 return NOTIFY_OK; 709 710 if (!per_cpu(l_p_j_ref, cpu)) { 711 per_cpu(l_p_j_ref, cpu) = 712 per_cpu(cpu_data, cpu).loops_per_jiffy; 713 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 714 if (!global_l_p_j_ref) { 715 global_l_p_j_ref = loops_per_jiffy; 716 global_l_p_j_ref_freq = freq->old; 717 } 718 } 719 720 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 721 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 722 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 723 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 724 global_l_p_j_ref_freq, 725 freq->new); 726 per_cpu(cpu_data, cpu).loops_per_jiffy = 727 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 728 per_cpu(l_p_j_ref_freq, cpu), 729 freq->new); 730 } 731 return NOTIFY_OK; 732 } 733 734 static struct notifier_block cpufreq_notifier = { 735 .notifier_call = cpufreq_callback, 736 }; 737 738 static int __init register_cpufreq_notifier(void) 739 { 740 return cpufreq_register_notifier(&cpufreq_notifier, 741 CPUFREQ_TRANSITION_NOTIFIER); 742 } 743 core_initcall(register_cpufreq_notifier); 744 745 #endif 746