xref: /openbmc/linux/arch/arm/kernel/smp.c (revision ee89bd6b)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55 
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CALL_FUNC_SINGLE,
68 	IPI_CPU_STOP,
69 };
70 
71 static DECLARE_COMPLETION(cpu_running);
72 
73 static struct smp_operations smp_ops;
74 
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 	if (ops)
78 		smp_ops = *ops;
79 };
80 
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 	int ret;
84 
85 	/*
86 	 * We need to tell the secondary core where to find
87 	 * its stack and the page tables.
88 	 */
89 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
91 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94 
95 	/*
96 	 * Now bring the CPU into our world.
97 	 */
98 	ret = boot_secondary(cpu, idle);
99 	if (ret == 0) {
100 		/*
101 		 * CPU was successfully started, wait for it
102 		 * to come online or time out.
103 		 */
104 		wait_for_completion_timeout(&cpu_running,
105 						 msecs_to_jiffies(1000));
106 
107 		if (!cpu_online(cpu)) {
108 			pr_crit("CPU%u: failed to come online\n", cpu);
109 			ret = -EIO;
110 		}
111 	} else {
112 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 	}
114 
115 	secondary_data.stack = NULL;
116 	secondary_data.pgdir = 0;
117 
118 	return ret;
119 }
120 
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124 	if (smp_ops.smp_init_cpus)
125 		smp_ops.smp_init_cpus();
126 }
127 
128 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
129 {
130 	if (smp_ops.smp_boot_secondary)
131 		return smp_ops.smp_boot_secondary(cpu, idle);
132 	return -ENOSYS;
133 }
134 
135 #ifdef CONFIG_HOTPLUG_CPU
136 static void percpu_timer_stop(void);
137 
138 static int platform_cpu_kill(unsigned int cpu)
139 {
140 	if (smp_ops.cpu_kill)
141 		return smp_ops.cpu_kill(cpu);
142 	return 1;
143 }
144 
145 static int platform_cpu_disable(unsigned int cpu)
146 {
147 	if (smp_ops.cpu_disable)
148 		return smp_ops.cpu_disable(cpu);
149 
150 	/*
151 	 * By default, allow disabling all CPUs except the first one,
152 	 * since this is special on a lot of platforms, e.g. because
153 	 * of clock tick interrupts.
154 	 */
155 	return cpu == 0 ? -EPERM : 0;
156 }
157 /*
158  * __cpu_disable runs on the processor to be shutdown.
159  */
160 int __cpuinit __cpu_disable(void)
161 {
162 	unsigned int cpu = smp_processor_id();
163 	int ret;
164 
165 	ret = platform_cpu_disable(cpu);
166 	if (ret)
167 		return ret;
168 
169 	/*
170 	 * Take this CPU offline.  Once we clear this, we can't return,
171 	 * and we must not schedule until we're ready to give up the cpu.
172 	 */
173 	set_cpu_online(cpu, false);
174 
175 	/*
176 	 * OK - migrate IRQs away from this CPU
177 	 */
178 	migrate_irqs();
179 
180 	/*
181 	 * Stop the local timer for this CPU.
182 	 */
183 	percpu_timer_stop();
184 
185 	/*
186 	 * Flush user cache and TLB mappings, and then remove this CPU
187 	 * from the vm mask set of all processes.
188 	 *
189 	 * Caches are flushed to the Level of Unification Inner Shareable
190 	 * to write-back dirty lines to unified caches shared by all CPUs.
191 	 */
192 	flush_cache_louis();
193 	local_flush_tlb_all();
194 
195 	clear_tasks_mm_cpumask(cpu);
196 
197 	return 0;
198 }
199 
200 static DECLARE_COMPLETION(cpu_died);
201 
202 /*
203  * called on the thread which is asking for a CPU to be shutdown -
204  * waits until shutdown has completed, or it is timed out.
205  */
206 void __cpuinit __cpu_die(unsigned int cpu)
207 {
208 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
209 		pr_err("CPU%u: cpu didn't die\n", cpu);
210 		return;
211 	}
212 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
213 
214 	/*
215 	 * platform_cpu_kill() is generally expected to do the powering off
216 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
217 	 * be done by the CPU which is dying in preference to supporting
218 	 * this call, but that means there is _no_ synchronisation between
219 	 * the requesting CPU and the dying CPU actually losing power.
220 	 */
221 	if (!platform_cpu_kill(cpu))
222 		printk("CPU%u: unable to kill\n", cpu);
223 }
224 
225 /*
226  * Called from the idle thread for the CPU which has been shutdown.
227  *
228  * Note that we disable IRQs here, but do not re-enable them
229  * before returning to the caller. This is also the behaviour
230  * of the other hotplug-cpu capable cores, so presumably coming
231  * out of idle fixes this.
232  */
233 void __ref cpu_die(void)
234 {
235 	unsigned int cpu = smp_processor_id();
236 
237 	idle_task_exit();
238 
239 	local_irq_disable();
240 
241 	/*
242 	 * Flush the data out of the L1 cache for this CPU.  This must be
243 	 * before the completion to ensure that data is safely written out
244 	 * before platform_cpu_kill() gets called - which may disable
245 	 * *this* CPU and power down its cache.
246 	 */
247 	flush_cache_louis();
248 
249 	/*
250 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
251 	 * this returns, power and/or clocks can be removed at any point
252 	 * from this CPU and its cache by platform_cpu_kill().
253 	 */
254 	complete(&cpu_died);
255 
256 	/*
257 	 * Ensure that the cache lines associated with that completion are
258 	 * written out.  This covers the case where _this_ CPU is doing the
259 	 * powering down, to ensure that the completion is visible to the
260 	 * CPU waiting for this one.
261 	 */
262 	flush_cache_louis();
263 
264 	/*
265 	 * The actual CPU shutdown procedure is at least platform (if not
266 	 * CPU) specific.  This may remove power, or it may simply spin.
267 	 *
268 	 * Platforms are generally expected *NOT* to return from this call,
269 	 * although there are some which do because they have no way to
270 	 * power down the CPU.  These platforms are the _only_ reason we
271 	 * have a return path which uses the fragment of assembly below.
272 	 *
273 	 * The return path should not be used for platforms which can
274 	 * power off the CPU.
275 	 */
276 	if (smp_ops.cpu_die)
277 		smp_ops.cpu_die(cpu);
278 
279 	/*
280 	 * Do not return to the idle loop - jump back to the secondary
281 	 * cpu initialisation.  There's some initialisation which needs
282 	 * to be repeated to undo the effects of taking the CPU offline.
283 	 */
284 	__asm__("mov	sp, %0\n"
285 	"	mov	fp, #0\n"
286 	"	b	secondary_start_kernel"
287 		:
288 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
289 }
290 #endif /* CONFIG_HOTPLUG_CPU */
291 
292 /*
293  * Called by both boot and secondaries to move global data into
294  * per-processor storage.
295  */
296 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
297 {
298 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
299 
300 	cpu_info->loops_per_jiffy = loops_per_jiffy;
301 	cpu_info->cpuid = read_cpuid_id();
302 
303 	store_cpu_topology(cpuid);
304 }
305 
306 static void percpu_timer_setup(void);
307 
308 /*
309  * This is the secondary CPU boot entry.  We're using this CPUs
310  * idle thread stack, but a set of temporary page tables.
311  */
312 asmlinkage void __cpuinit secondary_start_kernel(void)
313 {
314 	struct mm_struct *mm = &init_mm;
315 	unsigned int cpu;
316 
317 	/*
318 	 * The identity mapping is uncached (strongly ordered), so
319 	 * switch away from it before attempting any exclusive accesses.
320 	 */
321 	cpu_switch_mm(mm->pgd, mm);
322 	local_flush_bp_all();
323 	enter_lazy_tlb(mm, current);
324 	local_flush_tlb_all();
325 
326 	/*
327 	 * All kernel threads share the same mm context; grab a
328 	 * reference and switch to it.
329 	 */
330 	cpu = smp_processor_id();
331 	atomic_inc(&mm->mm_count);
332 	current->active_mm = mm;
333 	cpumask_set_cpu(cpu, mm_cpumask(mm));
334 
335 	cpu_init();
336 
337 	printk("CPU%u: Booted secondary processor\n", cpu);
338 
339 	preempt_disable();
340 	trace_hardirqs_off();
341 
342 	/*
343 	 * Give the platform a chance to do its own initialisation.
344 	 */
345 	if (smp_ops.smp_secondary_init)
346 		smp_ops.smp_secondary_init(cpu);
347 
348 	notify_cpu_starting(cpu);
349 
350 	calibrate_delay();
351 
352 	smp_store_cpu_info(cpu);
353 
354 	/*
355 	 * OK, now it's safe to let the boot CPU continue.  Wait for
356 	 * the CPU migration code to notice that the CPU is online
357 	 * before we continue - which happens after __cpu_up returns.
358 	 */
359 	set_cpu_online(cpu, true);
360 	complete(&cpu_running);
361 
362 	/*
363 	 * Setup the percpu timer for this CPU.
364 	 */
365 	percpu_timer_setup();
366 
367 	local_irq_enable();
368 	local_fiq_enable();
369 
370 	/*
371 	 * OK, it's off to the idle thread for us
372 	 */
373 	cpu_startup_entry(CPUHP_ONLINE);
374 }
375 
376 void __init smp_cpus_done(unsigned int max_cpus)
377 {
378 	int cpu;
379 	unsigned long bogosum = 0;
380 
381 	for_each_online_cpu(cpu)
382 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
383 
384 	printk(KERN_INFO "SMP: Total of %d processors activated "
385 	       "(%lu.%02lu BogoMIPS).\n",
386 	       num_online_cpus(),
387 	       bogosum / (500000/HZ),
388 	       (bogosum / (5000/HZ)) % 100);
389 
390 	hyp_mode_check();
391 }
392 
393 void __init smp_prepare_boot_cpu(void)
394 {
395 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
396 }
397 
398 void __init smp_prepare_cpus(unsigned int max_cpus)
399 {
400 	unsigned int ncores = num_possible_cpus();
401 
402 	init_cpu_topology();
403 
404 	smp_store_cpu_info(smp_processor_id());
405 
406 	/*
407 	 * are we trying to boot more cores than exist?
408 	 */
409 	if (max_cpus > ncores)
410 		max_cpus = ncores;
411 	if (ncores > 1 && max_cpus) {
412 		/*
413 		 * Enable the local timer or broadcast device for the
414 		 * boot CPU, but only if we have more than one CPU.
415 		 */
416 		percpu_timer_setup();
417 
418 		/*
419 		 * Initialise the present map, which describes the set of CPUs
420 		 * actually populated at the present time. A platform should
421 		 * re-initialize the map in the platforms smp_prepare_cpus()
422 		 * if present != possible (e.g. physical hotplug).
423 		 */
424 		init_cpu_present(cpu_possible_mask);
425 
426 		/*
427 		 * Initialise the SCU if there are more than one CPU
428 		 * and let them know where to start.
429 		 */
430 		if (smp_ops.smp_prepare_cpus)
431 			smp_ops.smp_prepare_cpus(max_cpus);
432 	}
433 }
434 
435 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
436 
437 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
438 {
439 	if (!smp_cross_call)
440 		smp_cross_call = fn;
441 }
442 
443 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
444 {
445 	smp_cross_call(mask, IPI_CALL_FUNC);
446 }
447 
448 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
449 {
450 	smp_cross_call(mask, IPI_WAKEUP);
451 }
452 
453 void arch_send_call_function_single_ipi(int cpu)
454 {
455 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
456 }
457 
458 static const char *ipi_types[NR_IPI] = {
459 #define S(x,s)	[x] = s
460 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
461 	S(IPI_TIMER, "Timer broadcast interrupts"),
462 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
463 	S(IPI_CALL_FUNC, "Function call interrupts"),
464 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
465 	S(IPI_CPU_STOP, "CPU stop interrupts"),
466 };
467 
468 void show_ipi_list(struct seq_file *p, int prec)
469 {
470 	unsigned int cpu, i;
471 
472 	for (i = 0; i < NR_IPI; i++) {
473 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
474 
475 		for_each_online_cpu(cpu)
476 			seq_printf(p, "%10u ",
477 				   __get_irq_stat(cpu, ipi_irqs[i]));
478 
479 		seq_printf(p, " %s\n", ipi_types[i]);
480 	}
481 }
482 
483 u64 smp_irq_stat_cpu(unsigned int cpu)
484 {
485 	u64 sum = 0;
486 	int i;
487 
488 	for (i = 0; i < NR_IPI; i++)
489 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
490 
491 	return sum;
492 }
493 
494 /*
495  * Timer (local or broadcast) support
496  */
497 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
498 
499 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
500 void tick_broadcast(const struct cpumask *mask)
501 {
502 	smp_cross_call(mask, IPI_TIMER);
503 }
504 #endif
505 
506 static void broadcast_timer_set_mode(enum clock_event_mode mode,
507 	struct clock_event_device *evt)
508 {
509 }
510 
511 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
512 {
513 	evt->name	= "dummy_timer";
514 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
515 			  CLOCK_EVT_FEAT_PERIODIC |
516 			  CLOCK_EVT_FEAT_DUMMY;
517 	evt->rating	= 100;
518 	evt->mult	= 1;
519 	evt->set_mode	= broadcast_timer_set_mode;
520 
521 	clockevents_register_device(evt);
522 }
523 
524 static struct local_timer_ops *lt_ops;
525 
526 #ifdef CONFIG_LOCAL_TIMERS
527 int local_timer_register(struct local_timer_ops *ops)
528 {
529 	if (!is_smp() || !setup_max_cpus)
530 		return -ENXIO;
531 
532 	if (lt_ops)
533 		return -EBUSY;
534 
535 	lt_ops = ops;
536 	return 0;
537 }
538 #endif
539 
540 static void __cpuinit percpu_timer_setup(void)
541 {
542 	unsigned int cpu = smp_processor_id();
543 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
544 
545 	evt->cpumask = cpumask_of(cpu);
546 
547 	if (!lt_ops || lt_ops->setup(evt))
548 		broadcast_timer_setup(evt);
549 }
550 
551 #ifdef CONFIG_HOTPLUG_CPU
552 /*
553  * The generic clock events code purposely does not stop the local timer
554  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
555  * manually here.
556  */
557 static void percpu_timer_stop(void)
558 {
559 	unsigned int cpu = smp_processor_id();
560 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
561 
562 	if (lt_ops)
563 		lt_ops->stop(evt);
564 }
565 #endif
566 
567 static DEFINE_RAW_SPINLOCK(stop_lock);
568 
569 /*
570  * ipi_cpu_stop - handle IPI from smp_send_stop()
571  */
572 static void ipi_cpu_stop(unsigned int cpu)
573 {
574 	if (system_state == SYSTEM_BOOTING ||
575 	    system_state == SYSTEM_RUNNING) {
576 		raw_spin_lock(&stop_lock);
577 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
578 		dump_stack();
579 		raw_spin_unlock(&stop_lock);
580 	}
581 
582 	set_cpu_online(cpu, false);
583 
584 	local_fiq_disable();
585 	local_irq_disable();
586 
587 	while (1)
588 		cpu_relax();
589 }
590 
591 /*
592  * Main handler for inter-processor interrupts
593  */
594 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
595 {
596 	handle_IPI(ipinr, regs);
597 }
598 
599 void handle_IPI(int ipinr, struct pt_regs *regs)
600 {
601 	unsigned int cpu = smp_processor_id();
602 	struct pt_regs *old_regs = set_irq_regs(regs);
603 
604 	if (ipinr < NR_IPI)
605 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
606 
607 	switch (ipinr) {
608 	case IPI_WAKEUP:
609 		break;
610 
611 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
612 	case IPI_TIMER:
613 		irq_enter();
614 		tick_receive_broadcast();
615 		irq_exit();
616 		break;
617 #endif
618 
619 	case IPI_RESCHEDULE:
620 		scheduler_ipi();
621 		break;
622 
623 	case IPI_CALL_FUNC:
624 		irq_enter();
625 		generic_smp_call_function_interrupt();
626 		irq_exit();
627 		break;
628 
629 	case IPI_CALL_FUNC_SINGLE:
630 		irq_enter();
631 		generic_smp_call_function_single_interrupt();
632 		irq_exit();
633 		break;
634 
635 	case IPI_CPU_STOP:
636 		irq_enter();
637 		ipi_cpu_stop(cpu);
638 		irq_exit();
639 		break;
640 
641 	default:
642 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
643 		       cpu, ipinr);
644 		break;
645 	}
646 	set_irq_regs(old_regs);
647 }
648 
649 void smp_send_reschedule(int cpu)
650 {
651 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
652 }
653 
654 #ifdef CONFIG_HOTPLUG_CPU
655 static void smp_kill_cpus(cpumask_t *mask)
656 {
657 	unsigned int cpu;
658 	for_each_cpu(cpu, mask)
659 		platform_cpu_kill(cpu);
660 }
661 #else
662 static void smp_kill_cpus(cpumask_t *mask) { }
663 #endif
664 
665 void smp_send_stop(void)
666 {
667 	unsigned long timeout;
668 	struct cpumask mask;
669 
670 	cpumask_copy(&mask, cpu_online_mask);
671 	cpumask_clear_cpu(smp_processor_id(), &mask);
672 	if (!cpumask_empty(&mask))
673 		smp_cross_call(&mask, IPI_CPU_STOP);
674 
675 	/* Wait up to one second for other CPUs to stop */
676 	timeout = USEC_PER_SEC;
677 	while (num_online_cpus() > 1 && timeout--)
678 		udelay(1);
679 
680 	if (num_online_cpus() > 1)
681 		pr_warning("SMP: failed to stop secondary CPUs\n");
682 
683 	smp_kill_cpus(&mask);
684 }
685 
686 /*
687  * not supported here
688  */
689 int setup_profiling_timer(unsigned int multiplier)
690 {
691 	return -EINVAL;
692 }
693 
694 #ifdef CONFIG_CPU_FREQ
695 
696 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
697 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
698 static unsigned long global_l_p_j_ref;
699 static unsigned long global_l_p_j_ref_freq;
700 
701 static int cpufreq_callback(struct notifier_block *nb,
702 					unsigned long val, void *data)
703 {
704 	struct cpufreq_freqs *freq = data;
705 	int cpu = freq->cpu;
706 
707 	if (freq->flags & CPUFREQ_CONST_LOOPS)
708 		return NOTIFY_OK;
709 
710 	if (!per_cpu(l_p_j_ref, cpu)) {
711 		per_cpu(l_p_j_ref, cpu) =
712 			per_cpu(cpu_data, cpu).loops_per_jiffy;
713 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
714 		if (!global_l_p_j_ref) {
715 			global_l_p_j_ref = loops_per_jiffy;
716 			global_l_p_j_ref_freq = freq->old;
717 		}
718 	}
719 
720 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
721 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
722 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
723 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
724 						global_l_p_j_ref_freq,
725 						freq->new);
726 		per_cpu(cpu_data, cpu).loops_per_jiffy =
727 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
728 					per_cpu(l_p_j_ref_freq, cpu),
729 					freq->new);
730 	}
731 	return NOTIFY_OK;
732 }
733 
734 static struct notifier_block cpufreq_notifier = {
735 	.notifier_call  = cpufreq_callback,
736 };
737 
738 static int __init register_cpufreq_notifier(void)
739 {
740 	return cpufreq_register_notifier(&cpufreq_notifier,
741 						CPUFREQ_TRANSITION_NOTIFIER);
742 }
743 core_initcall(register_cpufreq_notifier);
744 
745 #endif
746