1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/bugs.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/procinfo.h> 43 #include <asm/processor.h> 44 #include <asm/sections.h> 45 #include <asm/tlbflush.h> 46 #include <asm/ptrace.h> 47 #include <asm/smp_plat.h> 48 #include <asm/virt.h> 49 #include <asm/mach/arch.h> 50 #include <asm/mpu.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/ipi.h> 54 55 /* 56 * as from 2.5, kernels no longer have an init_tasks structure 57 * so we need some other way of telling a new secondary core 58 * where to place its SVC stack 59 */ 60 struct secondary_data secondary_data; 61 62 enum ipi_msg_type { 63 IPI_WAKEUP, 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CPU_STOP, 68 IPI_IRQ_WORK, 69 IPI_COMPLETION, 70 /* 71 * CPU_BACKTRACE is special and not included in NR_IPI 72 * or tracable with trace_ipi_* 73 */ 74 IPI_CPU_BACKTRACE, 75 /* 76 * SGI8-15 can be reserved by secure firmware, and thus may 77 * not be usable by the kernel. Please keep the above limited 78 * to at most 8 entries. 79 */ 80 }; 81 82 static DECLARE_COMPLETION(cpu_running); 83 84 static struct smp_operations smp_ops __ro_after_init; 85 86 void __init smp_set_ops(const struct smp_operations *ops) 87 { 88 if (ops) 89 smp_ops = *ops; 90 }; 91 92 static unsigned long get_arch_pgd(pgd_t *pgd) 93 { 94 #ifdef CONFIG_ARM_LPAE 95 return __phys_to_pfn(virt_to_phys(pgd)); 96 #else 97 return virt_to_phys(pgd); 98 #endif 99 } 100 101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 102 static int secondary_biglittle_prepare(unsigned int cpu) 103 { 104 if (!cpu_vtable[cpu]) 105 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 106 107 return cpu_vtable[cpu] ? 0 : -ENOMEM; 108 } 109 110 static void secondary_biglittle_init(void) 111 { 112 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 113 } 114 #else 115 static int secondary_biglittle_prepare(unsigned int cpu) 116 { 117 return 0; 118 } 119 120 static void secondary_biglittle_init(void) 121 { 122 } 123 #endif 124 125 int __cpu_up(unsigned int cpu, struct task_struct *idle) 126 { 127 int ret; 128 129 if (!smp_ops.smp_boot_secondary) 130 return -ENOSYS; 131 132 ret = secondary_biglittle_prepare(cpu); 133 if (ret) 134 return ret; 135 136 /* 137 * We need to tell the secondary core where to find 138 * its stack and the page tables. 139 */ 140 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 141 #ifdef CONFIG_ARM_MPU 142 secondary_data.mpu_rgn_info = &mpu_rgn_info; 143 #endif 144 145 #ifdef CONFIG_MMU 146 secondary_data.pgdir = virt_to_phys(idmap_pgd); 147 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 148 #endif 149 sync_cache_w(&secondary_data); 150 151 /* 152 * Now bring the CPU into our world. 153 */ 154 ret = smp_ops.smp_boot_secondary(cpu, idle); 155 if (ret == 0) { 156 /* 157 * CPU was successfully started, wait for it 158 * to come online or time out. 159 */ 160 wait_for_completion_timeout(&cpu_running, 161 msecs_to_jiffies(1000)); 162 163 if (!cpu_online(cpu)) { 164 pr_crit("CPU%u: failed to come online\n", cpu); 165 ret = -EIO; 166 } 167 } else { 168 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 169 } 170 171 172 memset(&secondary_data, 0, sizeof(secondary_data)); 173 return ret; 174 } 175 176 /* platform specific SMP operations */ 177 void __init smp_init_cpus(void) 178 { 179 if (smp_ops.smp_init_cpus) 180 smp_ops.smp_init_cpus(); 181 } 182 183 int platform_can_secondary_boot(void) 184 { 185 return !!smp_ops.smp_boot_secondary; 186 } 187 188 int platform_can_cpu_hotplug(void) 189 { 190 #ifdef CONFIG_HOTPLUG_CPU 191 if (smp_ops.cpu_kill) 192 return 1; 193 #endif 194 195 return 0; 196 } 197 198 #ifdef CONFIG_HOTPLUG_CPU 199 static int platform_cpu_kill(unsigned int cpu) 200 { 201 if (smp_ops.cpu_kill) 202 return smp_ops.cpu_kill(cpu); 203 return 1; 204 } 205 206 static int platform_cpu_disable(unsigned int cpu) 207 { 208 if (smp_ops.cpu_disable) 209 return smp_ops.cpu_disable(cpu); 210 211 return 0; 212 } 213 214 int platform_can_hotplug_cpu(unsigned int cpu) 215 { 216 /* cpu_die must be specified to support hotplug */ 217 if (!smp_ops.cpu_die) 218 return 0; 219 220 if (smp_ops.cpu_can_disable) 221 return smp_ops.cpu_can_disable(cpu); 222 223 /* 224 * By default, allow disabling all CPUs except the first one, 225 * since this is special on a lot of platforms, e.g. because 226 * of clock tick interrupts. 227 */ 228 return cpu != 0; 229 } 230 231 /* 232 * __cpu_disable runs on the processor to be shutdown. 233 */ 234 int __cpu_disable(void) 235 { 236 unsigned int cpu = smp_processor_id(); 237 int ret; 238 239 ret = platform_cpu_disable(cpu); 240 if (ret) 241 return ret; 242 243 /* 244 * Take this CPU offline. Once we clear this, we can't return, 245 * and we must not schedule until we're ready to give up the cpu. 246 */ 247 set_cpu_online(cpu, false); 248 249 /* 250 * OK - migrate IRQs away from this CPU 251 */ 252 irq_migrate_all_off_this_cpu(); 253 254 /* 255 * Flush user cache and TLB mappings, and then remove this CPU 256 * from the vm mask set of all processes. 257 * 258 * Caches are flushed to the Level of Unification Inner Shareable 259 * to write-back dirty lines to unified caches shared by all CPUs. 260 */ 261 flush_cache_louis(); 262 local_flush_tlb_all(); 263 264 return 0; 265 } 266 267 /* 268 * called on the thread which is asking for a CPU to be shutdown - 269 * waits until shutdown has completed, or it is timed out. 270 */ 271 void __cpu_die(unsigned int cpu) 272 { 273 if (!cpu_wait_death(cpu, 5)) { 274 pr_err("CPU%u: cpu didn't die\n", cpu); 275 return; 276 } 277 pr_debug("CPU%u: shutdown\n", cpu); 278 279 clear_tasks_mm_cpumask(cpu); 280 /* 281 * platform_cpu_kill() is generally expected to do the powering off 282 * and/or cutting of clocks to the dying CPU. Optionally, this may 283 * be done by the CPU which is dying in preference to supporting 284 * this call, but that means there is _no_ synchronisation between 285 * the requesting CPU and the dying CPU actually losing power. 286 */ 287 if (!platform_cpu_kill(cpu)) 288 pr_err("CPU%u: unable to kill\n", cpu); 289 } 290 291 /* 292 * Called from the idle thread for the CPU which has been shutdown. 293 * 294 * Note that we disable IRQs here, but do not re-enable them 295 * before returning to the caller. This is also the behaviour 296 * of the other hotplug-cpu capable cores, so presumably coming 297 * out of idle fixes this. 298 */ 299 void arch_cpu_idle_dead(void) 300 { 301 unsigned int cpu = smp_processor_id(); 302 303 idle_task_exit(); 304 305 local_irq_disable(); 306 307 /* 308 * Flush the data out of the L1 cache for this CPU. This must be 309 * before the completion to ensure that data is safely written out 310 * before platform_cpu_kill() gets called - which may disable 311 * *this* CPU and power down its cache. 312 */ 313 flush_cache_louis(); 314 315 /* 316 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 317 * this returns, power and/or clocks can be removed at any point 318 * from this CPU and its cache by platform_cpu_kill(). 319 */ 320 (void)cpu_report_death(); 321 322 /* 323 * Ensure that the cache lines associated with that completion are 324 * written out. This covers the case where _this_ CPU is doing the 325 * powering down, to ensure that the completion is visible to the 326 * CPU waiting for this one. 327 */ 328 flush_cache_louis(); 329 330 /* 331 * The actual CPU shutdown procedure is at least platform (if not 332 * CPU) specific. This may remove power, or it may simply spin. 333 * 334 * Platforms are generally expected *NOT* to return from this call, 335 * although there are some which do because they have no way to 336 * power down the CPU. These platforms are the _only_ reason we 337 * have a return path which uses the fragment of assembly below. 338 * 339 * The return path should not be used for platforms which can 340 * power off the CPU. 341 */ 342 if (smp_ops.cpu_die) 343 smp_ops.cpu_die(cpu); 344 345 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 346 cpu); 347 348 /* 349 * Do not return to the idle loop - jump back to the secondary 350 * cpu initialisation. There's some initialisation which needs 351 * to be repeated to undo the effects of taking the CPU offline. 352 */ 353 __asm__("mov sp, %0\n" 354 " mov fp, #0\n" 355 " b secondary_start_kernel" 356 : 357 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 358 } 359 #endif /* CONFIG_HOTPLUG_CPU */ 360 361 /* 362 * Called by both boot and secondaries to move global data into 363 * per-processor storage. 364 */ 365 static void smp_store_cpu_info(unsigned int cpuid) 366 { 367 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 368 369 cpu_info->loops_per_jiffy = loops_per_jiffy; 370 cpu_info->cpuid = read_cpuid_id(); 371 372 store_cpu_topology(cpuid); 373 check_cpu_icache_size(cpuid); 374 } 375 376 /* 377 * This is the secondary CPU boot entry. We're using this CPUs 378 * idle thread stack, but a set of temporary page tables. 379 */ 380 asmlinkage void secondary_start_kernel(void) 381 { 382 struct mm_struct *mm = &init_mm; 383 unsigned int cpu; 384 385 secondary_biglittle_init(); 386 387 /* 388 * The identity mapping is uncached (strongly ordered), so 389 * switch away from it before attempting any exclusive accesses. 390 */ 391 cpu_switch_mm(mm->pgd, mm); 392 local_flush_bp_all(); 393 enter_lazy_tlb(mm, current); 394 local_flush_tlb_all(); 395 396 /* 397 * All kernel threads share the same mm context; grab a 398 * reference and switch to it. 399 */ 400 cpu = smp_processor_id(); 401 mmgrab(mm); 402 current->active_mm = mm; 403 cpumask_set_cpu(cpu, mm_cpumask(mm)); 404 405 cpu_init(); 406 407 #ifndef CONFIG_MMU 408 setup_vectors_base(); 409 #endif 410 pr_debug("CPU%u: Booted secondary processor\n", cpu); 411 412 preempt_disable(); 413 trace_hardirqs_off(); 414 415 /* 416 * Give the platform a chance to do its own initialisation. 417 */ 418 if (smp_ops.smp_secondary_init) 419 smp_ops.smp_secondary_init(cpu); 420 421 notify_cpu_starting(cpu); 422 423 calibrate_delay(); 424 425 smp_store_cpu_info(cpu); 426 427 /* 428 * OK, now it's safe to let the boot CPU continue. Wait for 429 * the CPU migration code to notice that the CPU is online 430 * before we continue - which happens after __cpu_up returns. 431 */ 432 set_cpu_online(cpu, true); 433 434 check_other_bugs(); 435 436 complete(&cpu_running); 437 438 local_irq_enable(); 439 local_fiq_enable(); 440 local_abt_enable(); 441 442 /* 443 * OK, it's off to the idle thread for us 444 */ 445 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 446 } 447 448 void __init smp_cpus_done(unsigned int max_cpus) 449 { 450 int cpu; 451 unsigned long bogosum = 0; 452 453 for_each_online_cpu(cpu) 454 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 455 456 printk(KERN_INFO "SMP: Total of %d processors activated " 457 "(%lu.%02lu BogoMIPS).\n", 458 num_online_cpus(), 459 bogosum / (500000/HZ), 460 (bogosum / (5000/HZ)) % 100); 461 462 hyp_mode_check(); 463 } 464 465 void __init smp_prepare_boot_cpu(void) 466 { 467 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 468 } 469 470 void __init smp_prepare_cpus(unsigned int max_cpus) 471 { 472 unsigned int ncores = num_possible_cpus(); 473 474 init_cpu_topology(); 475 476 smp_store_cpu_info(smp_processor_id()); 477 478 /* 479 * are we trying to boot more cores than exist? 480 */ 481 if (max_cpus > ncores) 482 max_cpus = ncores; 483 if (ncores > 1 && max_cpus) { 484 /* 485 * Initialise the present map, which describes the set of CPUs 486 * actually populated at the present time. A platform should 487 * re-initialize the map in the platforms smp_prepare_cpus() 488 * if present != possible (e.g. physical hotplug). 489 */ 490 init_cpu_present(cpu_possible_mask); 491 492 /* 493 * Initialise the SCU if there are more than one CPU 494 * and let them know where to start. 495 */ 496 if (smp_ops.smp_prepare_cpus) 497 smp_ops.smp_prepare_cpus(max_cpus); 498 } 499 } 500 501 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 502 503 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 504 { 505 if (!__smp_cross_call) 506 __smp_cross_call = fn; 507 } 508 509 static const char *ipi_types[NR_IPI] __tracepoint_string = { 510 #define S(x,s) [x] = s 511 S(IPI_WAKEUP, "CPU wakeup interrupts"), 512 S(IPI_TIMER, "Timer broadcast interrupts"), 513 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 514 S(IPI_CALL_FUNC, "Function call interrupts"), 515 S(IPI_CPU_STOP, "CPU stop interrupts"), 516 S(IPI_IRQ_WORK, "IRQ work interrupts"), 517 S(IPI_COMPLETION, "completion interrupts"), 518 }; 519 520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 521 { 522 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 523 __smp_cross_call(target, ipinr); 524 } 525 526 void show_ipi_list(struct seq_file *p, int prec) 527 { 528 unsigned int cpu, i; 529 530 for (i = 0; i < NR_IPI; i++) { 531 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 532 533 for_each_online_cpu(cpu) 534 seq_printf(p, "%10u ", 535 __get_irq_stat(cpu, ipi_irqs[i])); 536 537 seq_printf(p, " %s\n", ipi_types[i]); 538 } 539 } 540 541 u64 smp_irq_stat_cpu(unsigned int cpu) 542 { 543 u64 sum = 0; 544 int i; 545 546 for (i = 0; i < NR_IPI; i++) 547 sum += __get_irq_stat(cpu, ipi_irqs[i]); 548 549 return sum; 550 } 551 552 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 553 { 554 smp_cross_call(mask, IPI_CALL_FUNC); 555 } 556 557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 558 { 559 smp_cross_call(mask, IPI_WAKEUP); 560 } 561 562 void arch_send_call_function_single_ipi(int cpu) 563 { 564 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 565 } 566 567 #ifdef CONFIG_IRQ_WORK 568 void arch_irq_work_raise(void) 569 { 570 if (arch_irq_work_has_interrupt()) 571 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 572 } 573 #endif 574 575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 576 void tick_broadcast(const struct cpumask *mask) 577 { 578 smp_cross_call(mask, IPI_TIMER); 579 } 580 #endif 581 582 static DEFINE_RAW_SPINLOCK(stop_lock); 583 584 /* 585 * ipi_cpu_stop - handle IPI from smp_send_stop() 586 */ 587 static void ipi_cpu_stop(unsigned int cpu) 588 { 589 if (system_state <= SYSTEM_RUNNING) { 590 raw_spin_lock(&stop_lock); 591 pr_crit("CPU%u: stopping\n", cpu); 592 dump_stack(); 593 raw_spin_unlock(&stop_lock); 594 } 595 596 set_cpu_online(cpu, false); 597 598 local_fiq_disable(); 599 local_irq_disable(); 600 601 while (1) { 602 cpu_relax(); 603 wfe(); 604 } 605 } 606 607 static DEFINE_PER_CPU(struct completion *, cpu_completion); 608 609 int register_ipi_completion(struct completion *completion, int cpu) 610 { 611 per_cpu(cpu_completion, cpu) = completion; 612 return IPI_COMPLETION; 613 } 614 615 static void ipi_complete(unsigned int cpu) 616 { 617 complete(per_cpu(cpu_completion, cpu)); 618 } 619 620 /* 621 * Main handler for inter-processor interrupts 622 */ 623 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 624 { 625 handle_IPI(ipinr, regs); 626 } 627 628 void handle_IPI(int ipinr, struct pt_regs *regs) 629 { 630 unsigned int cpu = smp_processor_id(); 631 struct pt_regs *old_regs = set_irq_regs(regs); 632 633 if ((unsigned)ipinr < NR_IPI) { 634 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 635 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 636 } 637 638 switch (ipinr) { 639 case IPI_WAKEUP: 640 break; 641 642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 643 case IPI_TIMER: 644 irq_enter(); 645 tick_receive_broadcast(); 646 irq_exit(); 647 break; 648 #endif 649 650 case IPI_RESCHEDULE: 651 scheduler_ipi(); 652 break; 653 654 case IPI_CALL_FUNC: 655 irq_enter(); 656 generic_smp_call_function_interrupt(); 657 irq_exit(); 658 break; 659 660 case IPI_CPU_STOP: 661 irq_enter(); 662 ipi_cpu_stop(cpu); 663 irq_exit(); 664 break; 665 666 #ifdef CONFIG_IRQ_WORK 667 case IPI_IRQ_WORK: 668 irq_enter(); 669 irq_work_run(); 670 irq_exit(); 671 break; 672 #endif 673 674 case IPI_COMPLETION: 675 irq_enter(); 676 ipi_complete(cpu); 677 irq_exit(); 678 break; 679 680 case IPI_CPU_BACKTRACE: 681 printk_nmi_enter(); 682 irq_enter(); 683 nmi_cpu_backtrace(regs); 684 irq_exit(); 685 printk_nmi_exit(); 686 break; 687 688 default: 689 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 690 cpu, ipinr); 691 break; 692 } 693 694 if ((unsigned)ipinr < NR_IPI) 695 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 696 set_irq_regs(old_regs); 697 } 698 699 void smp_send_reschedule(int cpu) 700 { 701 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 702 } 703 704 void smp_send_stop(void) 705 { 706 unsigned long timeout; 707 struct cpumask mask; 708 709 cpumask_copy(&mask, cpu_online_mask); 710 cpumask_clear_cpu(smp_processor_id(), &mask); 711 if (!cpumask_empty(&mask)) 712 smp_cross_call(&mask, IPI_CPU_STOP); 713 714 /* Wait up to one second for other CPUs to stop */ 715 timeout = USEC_PER_SEC; 716 while (num_online_cpus() > 1 && timeout--) 717 udelay(1); 718 719 if (num_online_cpus() > 1) 720 pr_warn("SMP: failed to stop secondary CPUs\n"); 721 } 722 723 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 724 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 725 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 726 * kdump fails. So split out the panic_smp_self_stop() and add 727 * set_cpu_online(smp_processor_id(), false). 728 */ 729 void panic_smp_self_stop(void) 730 { 731 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 732 smp_processor_id()); 733 set_cpu_online(smp_processor_id(), false); 734 while (1) 735 cpu_relax(); 736 } 737 738 /* 739 * not supported here 740 */ 741 int setup_profiling_timer(unsigned int multiplier) 742 { 743 return -EINVAL; 744 } 745 746 #ifdef CONFIG_CPU_FREQ 747 748 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 750 static unsigned long global_l_p_j_ref; 751 static unsigned long global_l_p_j_ref_freq; 752 753 static int cpufreq_callback(struct notifier_block *nb, 754 unsigned long val, void *data) 755 { 756 struct cpufreq_freqs *freq = data; 757 struct cpumask *cpus = freq->policy->cpus; 758 int cpu, first = cpumask_first(cpus); 759 unsigned int lpj; 760 761 if (freq->flags & CPUFREQ_CONST_LOOPS) 762 return NOTIFY_OK; 763 764 if (!per_cpu(l_p_j_ref, first)) { 765 for_each_cpu(cpu, cpus) { 766 per_cpu(l_p_j_ref, cpu) = 767 per_cpu(cpu_data, cpu).loops_per_jiffy; 768 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 769 } 770 771 if (!global_l_p_j_ref) { 772 global_l_p_j_ref = loops_per_jiffy; 773 global_l_p_j_ref_freq = freq->old; 774 } 775 } 776 777 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 778 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 779 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 780 global_l_p_j_ref_freq, 781 freq->new); 782 783 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 784 per_cpu(l_p_j_ref_freq, first), freq->new); 785 for_each_cpu(cpu, cpus) 786 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 787 } 788 return NOTIFY_OK; 789 } 790 791 static struct notifier_block cpufreq_notifier = { 792 .notifier_call = cpufreq_callback, 793 }; 794 795 static int __init register_cpufreq_notifier(void) 796 { 797 return cpufreq_register_notifier(&cpufreq_notifier, 798 CPUFREQ_TRANSITION_NOTIFIER); 799 } 800 core_initcall(register_cpufreq_notifier); 801 802 #endif 803 804 static void raise_nmi(cpumask_t *mask) 805 { 806 __smp_cross_call(mask, IPI_CPU_BACKTRACE); 807 } 808 809 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 810 { 811 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 812 } 813