xref: /openbmc/linux/arch/arm/kernel/smp.c (revision e1a3e724)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66 
67 enum ipi_msg_type {
68 	IPI_WAKEUP,
69 	IPI_TIMER,
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CALL_FUNC_SINGLE,
73 	IPI_CPU_STOP,
74 	IPI_IRQ_WORK,
75 	IPI_COMPLETION,
76 	IPI_CPU_BACKTRACE = 15,
77 };
78 
79 static DECLARE_COMPLETION(cpu_running);
80 
81 static struct smp_operations smp_ops;
82 
83 void __init smp_set_ops(struct smp_operations *ops)
84 {
85 	if (ops)
86 		smp_ops = *ops;
87 };
88 
89 static unsigned long get_arch_pgd(pgd_t *pgd)
90 {
91 #ifdef CONFIG_ARM_LPAE
92 	return __phys_to_pfn(virt_to_phys(pgd));
93 #else
94 	return virt_to_phys(pgd);
95 #endif
96 }
97 
98 int __cpu_up(unsigned int cpu, struct task_struct *idle)
99 {
100 	int ret;
101 
102 	if (!smp_ops.smp_boot_secondary)
103 		return -ENOSYS;
104 
105 	/*
106 	 * We need to tell the secondary core where to find
107 	 * its stack and the page tables.
108 	 */
109 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
110 #ifdef CONFIG_ARM_MPU
111 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
112 #endif
113 
114 #ifdef CONFIG_MMU
115 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
116 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
117 #endif
118 	sync_cache_w(&secondary_data);
119 
120 	/*
121 	 * Now bring the CPU into our world.
122 	 */
123 	ret = smp_ops.smp_boot_secondary(cpu, idle);
124 	if (ret == 0) {
125 		/*
126 		 * CPU was successfully started, wait for it
127 		 * to come online or time out.
128 		 */
129 		wait_for_completion_timeout(&cpu_running,
130 						 msecs_to_jiffies(1000));
131 
132 		if (!cpu_online(cpu)) {
133 			pr_crit("CPU%u: failed to come online\n", cpu);
134 			ret = -EIO;
135 		}
136 	} else {
137 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138 	}
139 
140 
141 	memset(&secondary_data, 0, sizeof(secondary_data));
142 	return ret;
143 }
144 
145 /* platform specific SMP operations */
146 void __init smp_init_cpus(void)
147 {
148 	if (smp_ops.smp_init_cpus)
149 		smp_ops.smp_init_cpus();
150 }
151 
152 int platform_can_secondary_boot(void)
153 {
154 	return !!smp_ops.smp_boot_secondary;
155 }
156 
157 int platform_can_cpu_hotplug(void)
158 {
159 #ifdef CONFIG_HOTPLUG_CPU
160 	if (smp_ops.cpu_kill)
161 		return 1;
162 #endif
163 
164 	return 0;
165 }
166 
167 #ifdef CONFIG_HOTPLUG_CPU
168 static int platform_cpu_kill(unsigned int cpu)
169 {
170 	if (smp_ops.cpu_kill)
171 		return smp_ops.cpu_kill(cpu);
172 	return 1;
173 }
174 
175 static int platform_cpu_disable(unsigned int cpu)
176 {
177 	if (smp_ops.cpu_disable)
178 		return smp_ops.cpu_disable(cpu);
179 
180 	return 0;
181 }
182 
183 int platform_can_hotplug_cpu(unsigned int cpu)
184 {
185 	/* cpu_die must be specified to support hotplug */
186 	if (!smp_ops.cpu_die)
187 		return 0;
188 
189 	if (smp_ops.cpu_can_disable)
190 		return smp_ops.cpu_can_disable(cpu);
191 
192 	/*
193 	 * By default, allow disabling all CPUs except the first one,
194 	 * since this is special on a lot of platforms, e.g. because
195 	 * of clock tick interrupts.
196 	 */
197 	return cpu != 0;
198 }
199 
200 /*
201  * __cpu_disable runs on the processor to be shutdown.
202  */
203 int __cpu_disable(void)
204 {
205 	unsigned int cpu = smp_processor_id();
206 	int ret;
207 
208 	ret = platform_cpu_disable(cpu);
209 	if (ret)
210 		return ret;
211 
212 	/*
213 	 * Take this CPU offline.  Once we clear this, we can't return,
214 	 * and we must not schedule until we're ready to give up the cpu.
215 	 */
216 	set_cpu_online(cpu, false);
217 
218 	/*
219 	 * OK - migrate IRQs away from this CPU
220 	 */
221 	migrate_irqs();
222 
223 	/*
224 	 * Flush user cache and TLB mappings, and then remove this CPU
225 	 * from the vm mask set of all processes.
226 	 *
227 	 * Caches are flushed to the Level of Unification Inner Shareable
228 	 * to write-back dirty lines to unified caches shared by all CPUs.
229 	 */
230 	flush_cache_louis();
231 	local_flush_tlb_all();
232 
233 	clear_tasks_mm_cpumask(cpu);
234 
235 	return 0;
236 }
237 
238 static DECLARE_COMPLETION(cpu_died);
239 
240 /*
241  * called on the thread which is asking for a CPU to be shutdown -
242  * waits until shutdown has completed, or it is timed out.
243  */
244 void __cpu_die(unsigned int cpu)
245 {
246 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
247 		pr_err("CPU%u: cpu didn't die\n", cpu);
248 		return;
249 	}
250 	pr_notice("CPU%u: shutdown\n", cpu);
251 
252 	/*
253 	 * platform_cpu_kill() is generally expected to do the powering off
254 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
255 	 * be done by the CPU which is dying in preference to supporting
256 	 * this call, but that means there is _no_ synchronisation between
257 	 * the requesting CPU and the dying CPU actually losing power.
258 	 */
259 	if (!platform_cpu_kill(cpu))
260 		pr_err("CPU%u: unable to kill\n", cpu);
261 }
262 
263 /*
264  * Called from the idle thread for the CPU which has been shutdown.
265  *
266  * Note that we disable IRQs here, but do not re-enable them
267  * before returning to the caller. This is also the behaviour
268  * of the other hotplug-cpu capable cores, so presumably coming
269  * out of idle fixes this.
270  */
271 void arch_cpu_idle_dead(void)
272 {
273 	unsigned int cpu = smp_processor_id();
274 
275 	idle_task_exit();
276 
277 	local_irq_disable();
278 
279 	/*
280 	 * Flush the data out of the L1 cache for this CPU.  This must be
281 	 * before the completion to ensure that data is safely written out
282 	 * before platform_cpu_kill() gets called - which may disable
283 	 * *this* CPU and power down its cache.
284 	 */
285 	flush_cache_louis();
286 
287 	/*
288 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
289 	 * this returns, power and/or clocks can be removed at any point
290 	 * from this CPU and its cache by platform_cpu_kill().
291 	 */
292 	complete(&cpu_died);
293 
294 	/*
295 	 * Ensure that the cache lines associated with that completion are
296 	 * written out.  This covers the case where _this_ CPU is doing the
297 	 * powering down, to ensure that the completion is visible to the
298 	 * CPU waiting for this one.
299 	 */
300 	flush_cache_louis();
301 
302 	/*
303 	 * The actual CPU shutdown procedure is at least platform (if not
304 	 * CPU) specific.  This may remove power, or it may simply spin.
305 	 *
306 	 * Platforms are generally expected *NOT* to return from this call,
307 	 * although there are some which do because they have no way to
308 	 * power down the CPU.  These platforms are the _only_ reason we
309 	 * have a return path which uses the fragment of assembly below.
310 	 *
311 	 * The return path should not be used for platforms which can
312 	 * power off the CPU.
313 	 */
314 	if (smp_ops.cpu_die)
315 		smp_ops.cpu_die(cpu);
316 
317 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
318 		cpu);
319 
320 	/*
321 	 * Do not return to the idle loop - jump back to the secondary
322 	 * cpu initialisation.  There's some initialisation which needs
323 	 * to be repeated to undo the effects of taking the CPU offline.
324 	 */
325 	__asm__("mov	sp, %0\n"
326 	"	mov	fp, #0\n"
327 	"	b	secondary_start_kernel"
328 		:
329 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
330 }
331 #endif /* CONFIG_HOTPLUG_CPU */
332 
333 /*
334  * Called by both boot and secondaries to move global data into
335  * per-processor storage.
336  */
337 static void smp_store_cpu_info(unsigned int cpuid)
338 {
339 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
340 
341 	cpu_info->loops_per_jiffy = loops_per_jiffy;
342 	cpu_info->cpuid = read_cpuid_id();
343 
344 	store_cpu_topology(cpuid);
345 }
346 
347 /*
348  * This is the secondary CPU boot entry.  We're using this CPUs
349  * idle thread stack, but a set of temporary page tables.
350  */
351 asmlinkage void secondary_start_kernel(void)
352 {
353 	struct mm_struct *mm = &init_mm;
354 	unsigned int cpu;
355 
356 	/*
357 	 * The identity mapping is uncached (strongly ordered), so
358 	 * switch away from it before attempting any exclusive accesses.
359 	 */
360 	cpu_switch_mm(mm->pgd, mm);
361 	local_flush_bp_all();
362 	enter_lazy_tlb(mm, current);
363 	local_flush_tlb_all();
364 
365 	/*
366 	 * All kernel threads share the same mm context; grab a
367 	 * reference and switch to it.
368 	 */
369 	cpu = smp_processor_id();
370 	atomic_inc(&mm->mm_count);
371 	current->active_mm = mm;
372 	cpumask_set_cpu(cpu, mm_cpumask(mm));
373 
374 	cpu_init();
375 
376 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
377 
378 	preempt_disable();
379 	trace_hardirqs_off();
380 
381 	/*
382 	 * Give the platform a chance to do its own initialisation.
383 	 */
384 	if (smp_ops.smp_secondary_init)
385 		smp_ops.smp_secondary_init(cpu);
386 
387 	notify_cpu_starting(cpu);
388 
389 	calibrate_delay();
390 
391 	smp_store_cpu_info(cpu);
392 
393 	/*
394 	 * OK, now it's safe to let the boot CPU continue.  Wait for
395 	 * the CPU migration code to notice that the CPU is online
396 	 * before we continue - which happens after __cpu_up returns.
397 	 */
398 	set_cpu_online(cpu, true);
399 	complete(&cpu_running);
400 
401 	local_irq_enable();
402 	local_fiq_enable();
403 
404 	/*
405 	 * OK, it's off to the idle thread for us
406 	 */
407 	cpu_startup_entry(CPUHP_ONLINE);
408 }
409 
410 void __init smp_cpus_done(unsigned int max_cpus)
411 {
412 	int cpu;
413 	unsigned long bogosum = 0;
414 
415 	for_each_online_cpu(cpu)
416 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
417 
418 	printk(KERN_INFO "SMP: Total of %d processors activated "
419 	       "(%lu.%02lu BogoMIPS).\n",
420 	       num_online_cpus(),
421 	       bogosum / (500000/HZ),
422 	       (bogosum / (5000/HZ)) % 100);
423 
424 	hyp_mode_check();
425 }
426 
427 void __init smp_prepare_boot_cpu(void)
428 {
429 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
430 }
431 
432 void __init smp_prepare_cpus(unsigned int max_cpus)
433 {
434 	unsigned int ncores = num_possible_cpus();
435 
436 	init_cpu_topology();
437 
438 	smp_store_cpu_info(smp_processor_id());
439 
440 	/*
441 	 * are we trying to boot more cores than exist?
442 	 */
443 	if (max_cpus > ncores)
444 		max_cpus = ncores;
445 	if (ncores > 1 && max_cpus) {
446 		/*
447 		 * Initialise the present map, which describes the set of CPUs
448 		 * actually populated at the present time. A platform should
449 		 * re-initialize the map in the platforms smp_prepare_cpus()
450 		 * if present != possible (e.g. physical hotplug).
451 		 */
452 		init_cpu_present(cpu_possible_mask);
453 
454 		/*
455 		 * Initialise the SCU if there are more than one CPU
456 		 * and let them know where to start.
457 		 */
458 		if (smp_ops.smp_prepare_cpus)
459 			smp_ops.smp_prepare_cpus(max_cpus);
460 	}
461 }
462 
463 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
464 
465 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
466 {
467 	if (!__smp_cross_call)
468 		__smp_cross_call = fn;
469 }
470 
471 static const char *ipi_types[NR_IPI] __tracepoint_string = {
472 #define S(x,s)	[x] = s
473 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
474 	S(IPI_TIMER, "Timer broadcast interrupts"),
475 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
476 	S(IPI_CALL_FUNC, "Function call interrupts"),
477 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
478 	S(IPI_CPU_STOP, "CPU stop interrupts"),
479 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
480 	S(IPI_COMPLETION, "completion interrupts"),
481 };
482 
483 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
484 {
485 	trace_ipi_raise(target, ipi_types[ipinr]);
486 	__smp_cross_call(target, ipinr);
487 }
488 
489 void show_ipi_list(struct seq_file *p, int prec)
490 {
491 	unsigned int cpu, i;
492 
493 	for (i = 0; i < NR_IPI; i++) {
494 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
495 
496 		for_each_online_cpu(cpu)
497 			seq_printf(p, "%10u ",
498 				   __get_irq_stat(cpu, ipi_irqs[i]));
499 
500 		seq_printf(p, " %s\n", ipi_types[i]);
501 	}
502 }
503 
504 u64 smp_irq_stat_cpu(unsigned int cpu)
505 {
506 	u64 sum = 0;
507 	int i;
508 
509 	for (i = 0; i < NR_IPI; i++)
510 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
511 
512 	return sum;
513 }
514 
515 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
516 {
517 	smp_cross_call(mask, IPI_CALL_FUNC);
518 }
519 
520 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
521 {
522 	smp_cross_call(mask, IPI_WAKEUP);
523 }
524 
525 void arch_send_call_function_single_ipi(int cpu)
526 {
527 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
528 }
529 
530 #ifdef CONFIG_IRQ_WORK
531 void arch_irq_work_raise(void)
532 {
533 	if (arch_irq_work_has_interrupt())
534 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
535 }
536 #endif
537 
538 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
539 void tick_broadcast(const struct cpumask *mask)
540 {
541 	smp_cross_call(mask, IPI_TIMER);
542 }
543 #endif
544 
545 static DEFINE_RAW_SPINLOCK(stop_lock);
546 
547 /*
548  * ipi_cpu_stop - handle IPI from smp_send_stop()
549  */
550 static void ipi_cpu_stop(unsigned int cpu)
551 {
552 	if (system_state == SYSTEM_BOOTING ||
553 	    system_state == SYSTEM_RUNNING) {
554 		raw_spin_lock(&stop_lock);
555 		pr_crit("CPU%u: stopping\n", cpu);
556 		dump_stack();
557 		raw_spin_unlock(&stop_lock);
558 	}
559 
560 	set_cpu_online(cpu, false);
561 
562 	local_fiq_disable();
563 	local_irq_disable();
564 
565 	while (1)
566 		cpu_relax();
567 }
568 
569 static DEFINE_PER_CPU(struct completion *, cpu_completion);
570 
571 int register_ipi_completion(struct completion *completion, int cpu)
572 {
573 	per_cpu(cpu_completion, cpu) = completion;
574 	return IPI_COMPLETION;
575 }
576 
577 static void ipi_complete(unsigned int cpu)
578 {
579 	complete(per_cpu(cpu_completion, cpu));
580 }
581 
582 /*
583  * Main handler for inter-processor interrupts
584  */
585 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
586 {
587 	handle_IPI(ipinr, regs);
588 }
589 
590 void handle_IPI(int ipinr, struct pt_regs *regs)
591 {
592 	unsigned int cpu = smp_processor_id();
593 	struct pt_regs *old_regs = set_irq_regs(regs);
594 
595 	if ((unsigned)ipinr < NR_IPI) {
596 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
597 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
598 	}
599 
600 	switch (ipinr) {
601 	case IPI_WAKEUP:
602 		break;
603 
604 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
605 	case IPI_TIMER:
606 		irq_enter();
607 		tick_receive_broadcast();
608 		irq_exit();
609 		break;
610 #endif
611 
612 	case IPI_RESCHEDULE:
613 		scheduler_ipi();
614 		break;
615 
616 	case IPI_CALL_FUNC:
617 		irq_enter();
618 		generic_smp_call_function_interrupt();
619 		irq_exit();
620 		break;
621 
622 	case IPI_CALL_FUNC_SINGLE:
623 		irq_enter();
624 		generic_smp_call_function_single_interrupt();
625 		irq_exit();
626 		break;
627 
628 	case IPI_CPU_STOP:
629 		irq_enter();
630 		ipi_cpu_stop(cpu);
631 		irq_exit();
632 		break;
633 
634 #ifdef CONFIG_IRQ_WORK
635 	case IPI_IRQ_WORK:
636 		irq_enter();
637 		irq_work_run();
638 		irq_exit();
639 		break;
640 #endif
641 
642 	case IPI_COMPLETION:
643 		irq_enter();
644 		ipi_complete(cpu);
645 		irq_exit();
646 		break;
647 
648 	case IPI_CPU_BACKTRACE:
649 		irq_enter();
650 		nmi_cpu_backtrace(regs);
651 		irq_exit();
652 		break;
653 
654 	default:
655 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
656 		        cpu, ipinr);
657 		break;
658 	}
659 
660 	if ((unsigned)ipinr < NR_IPI)
661 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
662 	set_irq_regs(old_regs);
663 }
664 
665 void smp_send_reschedule(int cpu)
666 {
667 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
668 }
669 
670 void smp_send_stop(void)
671 {
672 	unsigned long timeout;
673 	struct cpumask mask;
674 
675 	cpumask_copy(&mask, cpu_online_mask);
676 	cpumask_clear_cpu(smp_processor_id(), &mask);
677 	if (!cpumask_empty(&mask))
678 		smp_cross_call(&mask, IPI_CPU_STOP);
679 
680 	/* Wait up to one second for other CPUs to stop */
681 	timeout = USEC_PER_SEC;
682 	while (num_online_cpus() > 1 && timeout--)
683 		udelay(1);
684 
685 	if (num_online_cpus() > 1)
686 		pr_warn("SMP: failed to stop secondary CPUs\n");
687 }
688 
689 /*
690  * not supported here
691  */
692 int setup_profiling_timer(unsigned int multiplier)
693 {
694 	return -EINVAL;
695 }
696 
697 #ifdef CONFIG_CPU_FREQ
698 
699 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
701 static unsigned long global_l_p_j_ref;
702 static unsigned long global_l_p_j_ref_freq;
703 
704 static int cpufreq_callback(struct notifier_block *nb,
705 					unsigned long val, void *data)
706 {
707 	struct cpufreq_freqs *freq = data;
708 	int cpu = freq->cpu;
709 
710 	if (freq->flags & CPUFREQ_CONST_LOOPS)
711 		return NOTIFY_OK;
712 
713 	if (!per_cpu(l_p_j_ref, cpu)) {
714 		per_cpu(l_p_j_ref, cpu) =
715 			per_cpu(cpu_data, cpu).loops_per_jiffy;
716 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
717 		if (!global_l_p_j_ref) {
718 			global_l_p_j_ref = loops_per_jiffy;
719 			global_l_p_j_ref_freq = freq->old;
720 		}
721 	}
722 
723 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
724 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
725 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
726 						global_l_p_j_ref_freq,
727 						freq->new);
728 		per_cpu(cpu_data, cpu).loops_per_jiffy =
729 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
730 					per_cpu(l_p_j_ref_freq, cpu),
731 					freq->new);
732 	}
733 	return NOTIFY_OK;
734 }
735 
736 static struct notifier_block cpufreq_notifier = {
737 	.notifier_call  = cpufreq_callback,
738 };
739 
740 static int __init register_cpufreq_notifier(void)
741 {
742 	return cpufreq_register_notifier(&cpufreq_notifier,
743 						CPUFREQ_TRANSITION_NOTIFIER);
744 }
745 core_initcall(register_cpufreq_notifier);
746 
747 #endif
748 
749 static void raise_nmi(cpumask_t *mask)
750 {
751 	smp_cross_call(mask, IPI_CPU_BACKTRACE);
752 }
753 
754 void arch_trigger_all_cpu_backtrace(bool include_self)
755 {
756 	nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
757 }
758