xref: /openbmc/linux/arch/arm/kernel/smp.c (revision d3597236)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52 
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59 
60 /*
61  * control for which core is the next to come out of the secondary
62  * boot "holding pen"
63  */
64 volatile int pen_release = -1;
65 
66 enum ipi_msg_type {
67 	IPI_WAKEUP,
68 	IPI_TIMER,
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CALL_FUNC_SINGLE,
72 	IPI_CPU_STOP,
73 	IPI_IRQ_WORK,
74 	IPI_COMPLETION,
75 };
76 
77 static DECLARE_COMPLETION(cpu_running);
78 
79 static struct smp_operations smp_ops;
80 
81 void __init smp_set_ops(struct smp_operations *ops)
82 {
83 	if (ops)
84 		smp_ops = *ops;
85 };
86 
87 static unsigned long get_arch_pgd(pgd_t *pgd)
88 {
89 #ifdef CONFIG_ARM_LPAE
90 	return __phys_to_pfn(virt_to_phys(pgd));
91 #else
92 	return virt_to_phys(pgd);
93 #endif
94 }
95 
96 int __cpu_up(unsigned int cpu, struct task_struct *idle)
97 {
98 	int ret;
99 
100 	if (!smp_ops.smp_boot_secondary)
101 		return -ENOSYS;
102 
103 	/*
104 	 * We need to tell the secondary core where to find
105 	 * its stack and the page tables.
106 	 */
107 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
108 #ifdef CONFIG_ARM_MPU
109 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
110 #endif
111 
112 #ifdef CONFIG_MMU
113 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
114 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
115 #endif
116 	sync_cache_w(&secondary_data);
117 
118 	/*
119 	 * Now bring the CPU into our world.
120 	 */
121 	ret = smp_ops.smp_boot_secondary(cpu, idle);
122 	if (ret == 0) {
123 		/*
124 		 * CPU was successfully started, wait for it
125 		 * to come online or time out.
126 		 */
127 		wait_for_completion_timeout(&cpu_running,
128 						 msecs_to_jiffies(1000));
129 
130 		if (!cpu_online(cpu)) {
131 			pr_crit("CPU%u: failed to come online\n", cpu);
132 			ret = -EIO;
133 		}
134 	} else {
135 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 	}
137 
138 
139 	memset(&secondary_data, 0, sizeof(secondary_data));
140 	return ret;
141 }
142 
143 /* platform specific SMP operations */
144 void __init smp_init_cpus(void)
145 {
146 	if (smp_ops.smp_init_cpus)
147 		smp_ops.smp_init_cpus();
148 }
149 
150 int platform_can_secondary_boot(void)
151 {
152 	return !!smp_ops.smp_boot_secondary;
153 }
154 
155 int platform_can_cpu_hotplug(void)
156 {
157 #ifdef CONFIG_HOTPLUG_CPU
158 	if (smp_ops.cpu_kill)
159 		return 1;
160 #endif
161 
162 	return 0;
163 }
164 
165 #ifdef CONFIG_HOTPLUG_CPU
166 static int platform_cpu_kill(unsigned int cpu)
167 {
168 	if (smp_ops.cpu_kill)
169 		return smp_ops.cpu_kill(cpu);
170 	return 1;
171 }
172 
173 static int platform_cpu_disable(unsigned int cpu)
174 {
175 	if (smp_ops.cpu_disable)
176 		return smp_ops.cpu_disable(cpu);
177 
178 	/*
179 	 * By default, allow disabling all CPUs except the first one,
180 	 * since this is special on a lot of platforms, e.g. because
181 	 * of clock tick interrupts.
182 	 */
183 	return cpu == 0 ? -EPERM : 0;
184 }
185 /*
186  * __cpu_disable runs on the processor to be shutdown.
187  */
188 int __cpu_disable(void)
189 {
190 	unsigned int cpu = smp_processor_id();
191 	int ret;
192 
193 	ret = platform_cpu_disable(cpu);
194 	if (ret)
195 		return ret;
196 
197 	/*
198 	 * Take this CPU offline.  Once we clear this, we can't return,
199 	 * and we must not schedule until we're ready to give up the cpu.
200 	 */
201 	set_cpu_online(cpu, false);
202 
203 	/*
204 	 * OK - migrate IRQs away from this CPU
205 	 */
206 	migrate_irqs();
207 
208 	/*
209 	 * Flush user cache and TLB mappings, and then remove this CPU
210 	 * from the vm mask set of all processes.
211 	 *
212 	 * Caches are flushed to the Level of Unification Inner Shareable
213 	 * to write-back dirty lines to unified caches shared by all CPUs.
214 	 */
215 	flush_cache_louis();
216 	local_flush_tlb_all();
217 
218 	clear_tasks_mm_cpumask(cpu);
219 
220 	return 0;
221 }
222 
223 static DECLARE_COMPLETION(cpu_died);
224 
225 /*
226  * called on the thread which is asking for a CPU to be shutdown -
227  * waits until shutdown has completed, or it is timed out.
228  */
229 void __cpu_die(unsigned int cpu)
230 {
231 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
232 		pr_err("CPU%u: cpu didn't die\n", cpu);
233 		return;
234 	}
235 	pr_notice("CPU%u: shutdown\n", cpu);
236 
237 	/*
238 	 * platform_cpu_kill() is generally expected to do the powering off
239 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
240 	 * be done by the CPU which is dying in preference to supporting
241 	 * this call, but that means there is _no_ synchronisation between
242 	 * the requesting CPU and the dying CPU actually losing power.
243 	 */
244 	if (!platform_cpu_kill(cpu))
245 		pr_err("CPU%u: unable to kill\n", cpu);
246 }
247 
248 /*
249  * Called from the idle thread for the CPU which has been shutdown.
250  *
251  * Note that we disable IRQs here, but do not re-enable them
252  * before returning to the caller. This is also the behaviour
253  * of the other hotplug-cpu capable cores, so presumably coming
254  * out of idle fixes this.
255  */
256 void __ref cpu_die(void)
257 {
258 	unsigned int cpu = smp_processor_id();
259 
260 	idle_task_exit();
261 
262 	local_irq_disable();
263 
264 	/*
265 	 * Flush the data out of the L1 cache for this CPU.  This must be
266 	 * before the completion to ensure that data is safely written out
267 	 * before platform_cpu_kill() gets called - which may disable
268 	 * *this* CPU and power down its cache.
269 	 */
270 	flush_cache_louis();
271 
272 	/*
273 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
274 	 * this returns, power and/or clocks can be removed at any point
275 	 * from this CPU and its cache by platform_cpu_kill().
276 	 */
277 	complete(&cpu_died);
278 
279 	/*
280 	 * Ensure that the cache lines associated with that completion are
281 	 * written out.  This covers the case where _this_ CPU is doing the
282 	 * powering down, to ensure that the completion is visible to the
283 	 * CPU waiting for this one.
284 	 */
285 	flush_cache_louis();
286 
287 	/*
288 	 * The actual CPU shutdown procedure is at least platform (if not
289 	 * CPU) specific.  This may remove power, or it may simply spin.
290 	 *
291 	 * Platforms are generally expected *NOT* to return from this call,
292 	 * although there are some which do because they have no way to
293 	 * power down the CPU.  These platforms are the _only_ reason we
294 	 * have a return path which uses the fragment of assembly below.
295 	 *
296 	 * The return path should not be used for platforms which can
297 	 * power off the CPU.
298 	 */
299 	if (smp_ops.cpu_die)
300 		smp_ops.cpu_die(cpu);
301 
302 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
303 		cpu);
304 
305 	/*
306 	 * Do not return to the idle loop - jump back to the secondary
307 	 * cpu initialisation.  There's some initialisation which needs
308 	 * to be repeated to undo the effects of taking the CPU offline.
309 	 */
310 	__asm__("mov	sp, %0\n"
311 	"	mov	fp, #0\n"
312 	"	b	secondary_start_kernel"
313 		:
314 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
315 }
316 #endif /* CONFIG_HOTPLUG_CPU */
317 
318 /*
319  * Called by both boot and secondaries to move global data into
320  * per-processor storage.
321  */
322 static void smp_store_cpu_info(unsigned int cpuid)
323 {
324 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
325 
326 	cpu_info->loops_per_jiffy = loops_per_jiffy;
327 	cpu_info->cpuid = read_cpuid_id();
328 
329 	store_cpu_topology(cpuid);
330 }
331 
332 /*
333  * This is the secondary CPU boot entry.  We're using this CPUs
334  * idle thread stack, but a set of temporary page tables.
335  */
336 asmlinkage void secondary_start_kernel(void)
337 {
338 	struct mm_struct *mm = &init_mm;
339 	unsigned int cpu;
340 
341 	/*
342 	 * The identity mapping is uncached (strongly ordered), so
343 	 * switch away from it before attempting any exclusive accesses.
344 	 */
345 	cpu_switch_mm(mm->pgd, mm);
346 	local_flush_bp_all();
347 	enter_lazy_tlb(mm, current);
348 	local_flush_tlb_all();
349 
350 	/*
351 	 * All kernel threads share the same mm context; grab a
352 	 * reference and switch to it.
353 	 */
354 	cpu = smp_processor_id();
355 	atomic_inc(&mm->mm_count);
356 	current->active_mm = mm;
357 	cpumask_set_cpu(cpu, mm_cpumask(mm));
358 
359 	cpu_init();
360 
361 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
362 
363 	preempt_disable();
364 	trace_hardirqs_off();
365 
366 	/*
367 	 * Give the platform a chance to do its own initialisation.
368 	 */
369 	if (smp_ops.smp_secondary_init)
370 		smp_ops.smp_secondary_init(cpu);
371 
372 	notify_cpu_starting(cpu);
373 
374 	calibrate_delay();
375 
376 	smp_store_cpu_info(cpu);
377 
378 	/*
379 	 * OK, now it's safe to let the boot CPU continue.  Wait for
380 	 * the CPU migration code to notice that the CPU is online
381 	 * before we continue - which happens after __cpu_up returns.
382 	 */
383 	set_cpu_online(cpu, true);
384 	complete(&cpu_running);
385 
386 	local_irq_enable();
387 	local_fiq_enable();
388 
389 	/*
390 	 * OK, it's off to the idle thread for us
391 	 */
392 	cpu_startup_entry(CPUHP_ONLINE);
393 }
394 
395 void __init smp_cpus_done(unsigned int max_cpus)
396 {
397 	int cpu;
398 	unsigned long bogosum = 0;
399 
400 	for_each_online_cpu(cpu)
401 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
402 
403 	printk(KERN_INFO "SMP: Total of %d processors activated "
404 	       "(%lu.%02lu BogoMIPS).\n",
405 	       num_online_cpus(),
406 	       bogosum / (500000/HZ),
407 	       (bogosum / (5000/HZ)) % 100);
408 
409 	hyp_mode_check();
410 }
411 
412 void __init smp_prepare_boot_cpu(void)
413 {
414 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
415 }
416 
417 void __init smp_prepare_cpus(unsigned int max_cpus)
418 {
419 	unsigned int ncores = num_possible_cpus();
420 
421 	init_cpu_topology();
422 
423 	smp_store_cpu_info(smp_processor_id());
424 
425 	/*
426 	 * are we trying to boot more cores than exist?
427 	 */
428 	if (max_cpus > ncores)
429 		max_cpus = ncores;
430 	if (ncores > 1 && max_cpus) {
431 		/*
432 		 * Initialise the present map, which describes the set of CPUs
433 		 * actually populated at the present time. A platform should
434 		 * re-initialize the map in the platforms smp_prepare_cpus()
435 		 * if present != possible (e.g. physical hotplug).
436 		 */
437 		init_cpu_present(cpu_possible_mask);
438 
439 		/*
440 		 * Initialise the SCU if there are more than one CPU
441 		 * and let them know where to start.
442 		 */
443 		if (smp_ops.smp_prepare_cpus)
444 			smp_ops.smp_prepare_cpus(max_cpus);
445 	}
446 }
447 
448 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
449 
450 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
451 {
452 	if (!__smp_cross_call)
453 		__smp_cross_call = fn;
454 }
455 
456 static const char *ipi_types[NR_IPI] __tracepoint_string = {
457 #define S(x,s)	[x] = s
458 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
459 	S(IPI_TIMER, "Timer broadcast interrupts"),
460 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
461 	S(IPI_CALL_FUNC, "Function call interrupts"),
462 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
463 	S(IPI_CPU_STOP, "CPU stop interrupts"),
464 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
465 	S(IPI_COMPLETION, "completion interrupts"),
466 };
467 
468 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
469 {
470 	trace_ipi_raise(target, ipi_types[ipinr]);
471 	__smp_cross_call(target, ipinr);
472 }
473 
474 void show_ipi_list(struct seq_file *p, int prec)
475 {
476 	unsigned int cpu, i;
477 
478 	for (i = 0; i < NR_IPI; i++) {
479 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
480 
481 		for_each_online_cpu(cpu)
482 			seq_printf(p, "%10u ",
483 				   __get_irq_stat(cpu, ipi_irqs[i]));
484 
485 		seq_printf(p, " %s\n", ipi_types[i]);
486 	}
487 }
488 
489 u64 smp_irq_stat_cpu(unsigned int cpu)
490 {
491 	u64 sum = 0;
492 	int i;
493 
494 	for (i = 0; i < NR_IPI; i++)
495 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
496 
497 	return sum;
498 }
499 
500 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
501 {
502 	smp_cross_call(mask, IPI_CALL_FUNC);
503 }
504 
505 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
506 {
507 	smp_cross_call(mask, IPI_WAKEUP);
508 }
509 
510 void arch_send_call_function_single_ipi(int cpu)
511 {
512 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
513 }
514 
515 #ifdef CONFIG_IRQ_WORK
516 void arch_irq_work_raise(void)
517 {
518 	if (arch_irq_work_has_interrupt())
519 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
520 }
521 #endif
522 
523 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
524 void tick_broadcast(const struct cpumask *mask)
525 {
526 	smp_cross_call(mask, IPI_TIMER);
527 }
528 #endif
529 
530 static DEFINE_RAW_SPINLOCK(stop_lock);
531 
532 /*
533  * ipi_cpu_stop - handle IPI from smp_send_stop()
534  */
535 static void ipi_cpu_stop(unsigned int cpu)
536 {
537 	if (system_state == SYSTEM_BOOTING ||
538 	    system_state == SYSTEM_RUNNING) {
539 		raw_spin_lock(&stop_lock);
540 		pr_crit("CPU%u: stopping\n", cpu);
541 		dump_stack();
542 		raw_spin_unlock(&stop_lock);
543 	}
544 
545 	set_cpu_online(cpu, false);
546 
547 	local_fiq_disable();
548 	local_irq_disable();
549 
550 	while (1)
551 		cpu_relax();
552 }
553 
554 static DEFINE_PER_CPU(struct completion *, cpu_completion);
555 
556 int register_ipi_completion(struct completion *completion, int cpu)
557 {
558 	per_cpu(cpu_completion, cpu) = completion;
559 	return IPI_COMPLETION;
560 }
561 
562 static void ipi_complete(unsigned int cpu)
563 {
564 	complete(per_cpu(cpu_completion, cpu));
565 }
566 
567 /*
568  * Main handler for inter-processor interrupts
569  */
570 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
571 {
572 	handle_IPI(ipinr, regs);
573 }
574 
575 void handle_IPI(int ipinr, struct pt_regs *regs)
576 {
577 	unsigned int cpu = smp_processor_id();
578 	struct pt_regs *old_regs = set_irq_regs(regs);
579 
580 	if ((unsigned)ipinr < NR_IPI) {
581 		trace_ipi_entry(ipi_types[ipinr]);
582 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
583 	}
584 
585 	switch (ipinr) {
586 	case IPI_WAKEUP:
587 		break;
588 
589 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
590 	case IPI_TIMER:
591 		irq_enter();
592 		tick_receive_broadcast();
593 		irq_exit();
594 		break;
595 #endif
596 
597 	case IPI_RESCHEDULE:
598 		scheduler_ipi();
599 		break;
600 
601 	case IPI_CALL_FUNC:
602 		irq_enter();
603 		generic_smp_call_function_interrupt();
604 		irq_exit();
605 		break;
606 
607 	case IPI_CALL_FUNC_SINGLE:
608 		irq_enter();
609 		generic_smp_call_function_single_interrupt();
610 		irq_exit();
611 		break;
612 
613 	case IPI_CPU_STOP:
614 		irq_enter();
615 		ipi_cpu_stop(cpu);
616 		irq_exit();
617 		break;
618 
619 #ifdef CONFIG_IRQ_WORK
620 	case IPI_IRQ_WORK:
621 		irq_enter();
622 		irq_work_run();
623 		irq_exit();
624 		break;
625 #endif
626 
627 	case IPI_COMPLETION:
628 		irq_enter();
629 		ipi_complete(cpu);
630 		irq_exit();
631 		break;
632 
633 	default:
634 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
635 		        cpu, ipinr);
636 		break;
637 	}
638 
639 	if ((unsigned)ipinr < NR_IPI)
640 		trace_ipi_exit(ipi_types[ipinr]);
641 	set_irq_regs(old_regs);
642 }
643 
644 void smp_send_reschedule(int cpu)
645 {
646 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
647 }
648 
649 void smp_send_stop(void)
650 {
651 	unsigned long timeout;
652 	struct cpumask mask;
653 
654 	cpumask_copy(&mask, cpu_online_mask);
655 	cpumask_clear_cpu(smp_processor_id(), &mask);
656 	if (!cpumask_empty(&mask))
657 		smp_cross_call(&mask, IPI_CPU_STOP);
658 
659 	/* Wait up to one second for other CPUs to stop */
660 	timeout = USEC_PER_SEC;
661 	while (num_online_cpus() > 1 && timeout--)
662 		udelay(1);
663 
664 	if (num_online_cpus() > 1)
665 		pr_warn("SMP: failed to stop secondary CPUs\n");
666 }
667 
668 /*
669  * not supported here
670  */
671 int setup_profiling_timer(unsigned int multiplier)
672 {
673 	return -EINVAL;
674 }
675 
676 #ifdef CONFIG_CPU_FREQ
677 
678 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
679 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
680 static unsigned long global_l_p_j_ref;
681 static unsigned long global_l_p_j_ref_freq;
682 
683 static int cpufreq_callback(struct notifier_block *nb,
684 					unsigned long val, void *data)
685 {
686 	struct cpufreq_freqs *freq = data;
687 	int cpu = freq->cpu;
688 
689 	if (freq->flags & CPUFREQ_CONST_LOOPS)
690 		return NOTIFY_OK;
691 
692 	if (!per_cpu(l_p_j_ref, cpu)) {
693 		per_cpu(l_p_j_ref, cpu) =
694 			per_cpu(cpu_data, cpu).loops_per_jiffy;
695 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
696 		if (!global_l_p_j_ref) {
697 			global_l_p_j_ref = loops_per_jiffy;
698 			global_l_p_j_ref_freq = freq->old;
699 		}
700 	}
701 
702 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
703 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
704 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
705 						global_l_p_j_ref_freq,
706 						freq->new);
707 		per_cpu(cpu_data, cpu).loops_per_jiffy =
708 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
709 					per_cpu(l_p_j_ref_freq, cpu),
710 					freq->new);
711 	}
712 	return NOTIFY_OK;
713 }
714 
715 static struct notifier_block cpufreq_notifier = {
716 	.notifier_call  = cpufreq_callback,
717 };
718 
719 static int __init register_cpufreq_notifier(void)
720 {
721 	return cpufreq_register_notifier(&cpufreq_notifier,
722 						CPUFREQ_TRANSITION_NOTIFIER);
723 }
724 core_initcall(register_cpufreq_notifier);
725 
726 #endif
727