xref: /openbmc/linux/arch/arm/kernel/smp.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 
29 #include <linux/atomic.h>
30 #include <asm/cacheflush.h>
31 #include <asm/cpu.h>
32 #include <asm/cputype.h>
33 #include <asm/exception.h>
34 #include <asm/idmap.h>
35 #include <asm/topology.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sections.h>
41 #include <asm/tlbflush.h>
42 #include <asm/ptrace.h>
43 #include <asm/localtimer.h>
44 #include <asm/smp_plat.h>
45 
46 /*
47  * as from 2.5, kernels no longer have an init_tasks structure
48  * so we need some other way of telling a new secondary core
49  * where to place its SVC stack
50  */
51 struct secondary_data secondary_data;
52 
53 enum ipi_msg_type {
54 	IPI_TIMER = 2,
55 	IPI_RESCHEDULE,
56 	IPI_CALL_FUNC,
57 	IPI_CALL_FUNC_SINGLE,
58 	IPI_CPU_STOP,
59 };
60 
61 static DECLARE_COMPLETION(cpu_running);
62 
63 int __cpuinit __cpu_up(unsigned int cpu)
64 {
65 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
66 	struct task_struct *idle = ci->idle;
67 	int ret;
68 
69 	/*
70 	 * Spawn a new process manually, if not already done.
71 	 * Grab a pointer to its task struct so we can mess with it
72 	 */
73 	if (!idle) {
74 		idle = fork_idle(cpu);
75 		if (IS_ERR(idle)) {
76 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
77 			return PTR_ERR(idle);
78 		}
79 		ci->idle = idle;
80 	} else {
81 		/*
82 		 * Since this idle thread is being re-used, call
83 		 * init_idle() to reinitialize the thread structure.
84 		 */
85 		init_idle(idle, cpu);
86 	}
87 
88 	/*
89 	 * We need to tell the secondary core where to find
90 	 * its stack and the page tables.
91 	 */
92 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
93 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
94 	secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
95 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
96 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
97 
98 	/*
99 	 * Now bring the CPU into our world.
100 	 */
101 	ret = boot_secondary(cpu, idle);
102 	if (ret == 0) {
103 		/*
104 		 * CPU was successfully started, wait for it
105 		 * to come online or time out.
106 		 */
107 		wait_for_completion_timeout(&cpu_running,
108 						 msecs_to_jiffies(1000));
109 
110 		if (!cpu_online(cpu)) {
111 			pr_crit("CPU%u: failed to come online\n", cpu);
112 			ret = -EIO;
113 		}
114 	} else {
115 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
116 	}
117 
118 	secondary_data.stack = NULL;
119 	secondary_data.pgdir = 0;
120 
121 	return ret;
122 }
123 
124 #ifdef CONFIG_HOTPLUG_CPU
125 static void percpu_timer_stop(void);
126 
127 /*
128  * __cpu_disable runs on the processor to be shutdown.
129  */
130 int __cpu_disable(void)
131 {
132 	unsigned int cpu = smp_processor_id();
133 	struct task_struct *p;
134 	int ret;
135 
136 	ret = platform_cpu_disable(cpu);
137 	if (ret)
138 		return ret;
139 
140 	/*
141 	 * Take this CPU offline.  Once we clear this, we can't return,
142 	 * and we must not schedule until we're ready to give up the cpu.
143 	 */
144 	set_cpu_online(cpu, false);
145 
146 	/*
147 	 * OK - migrate IRQs away from this CPU
148 	 */
149 	migrate_irqs();
150 
151 	/*
152 	 * Stop the local timer for this CPU.
153 	 */
154 	percpu_timer_stop();
155 
156 	/*
157 	 * Flush user cache and TLB mappings, and then remove this CPU
158 	 * from the vm mask set of all processes.
159 	 */
160 	flush_cache_all();
161 	local_flush_tlb_all();
162 
163 	read_lock(&tasklist_lock);
164 	for_each_process(p) {
165 		if (p->mm)
166 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
167 	}
168 	read_unlock(&tasklist_lock);
169 
170 	return 0;
171 }
172 
173 static DECLARE_COMPLETION(cpu_died);
174 
175 /*
176  * called on the thread which is asking for a CPU to be shutdown -
177  * waits until shutdown has completed, or it is timed out.
178  */
179 void __cpu_die(unsigned int cpu)
180 {
181 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
182 		pr_err("CPU%u: cpu didn't die\n", cpu);
183 		return;
184 	}
185 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
186 
187 	if (!platform_cpu_kill(cpu))
188 		printk("CPU%u: unable to kill\n", cpu);
189 }
190 
191 /*
192  * Called from the idle thread for the CPU which has been shutdown.
193  *
194  * Note that we disable IRQs here, but do not re-enable them
195  * before returning to the caller. This is also the behaviour
196  * of the other hotplug-cpu capable cores, so presumably coming
197  * out of idle fixes this.
198  */
199 void __ref cpu_die(void)
200 {
201 	unsigned int cpu = smp_processor_id();
202 
203 	idle_task_exit();
204 
205 	local_irq_disable();
206 	mb();
207 
208 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
209 	complete(&cpu_died);
210 
211 	/*
212 	 * actual CPU shutdown procedure is at least platform (if not
213 	 * CPU) specific.
214 	 */
215 	platform_cpu_die(cpu);
216 
217 	/*
218 	 * Do not return to the idle loop - jump back to the secondary
219 	 * cpu initialisation.  There's some initialisation which needs
220 	 * to be repeated to undo the effects of taking the CPU offline.
221 	 */
222 	__asm__("mov	sp, %0\n"
223 	"	mov	fp, #0\n"
224 	"	b	secondary_start_kernel"
225 		:
226 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
227 }
228 #endif /* CONFIG_HOTPLUG_CPU */
229 
230 /*
231  * Called by both boot and secondaries to move global data into
232  * per-processor storage.
233  */
234 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
235 {
236 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
237 
238 	cpu_info->loops_per_jiffy = loops_per_jiffy;
239 
240 	store_cpu_topology(cpuid);
241 }
242 
243 static void percpu_timer_setup(void);
244 
245 /*
246  * This is the secondary CPU boot entry.  We're using this CPUs
247  * idle thread stack, but a set of temporary page tables.
248  */
249 asmlinkage void __cpuinit secondary_start_kernel(void)
250 {
251 	struct mm_struct *mm = &init_mm;
252 	unsigned int cpu = smp_processor_id();
253 
254 	/*
255 	 * All kernel threads share the same mm context; grab a
256 	 * reference and switch to it.
257 	 */
258 	atomic_inc(&mm->mm_count);
259 	current->active_mm = mm;
260 	cpumask_set_cpu(cpu, mm_cpumask(mm));
261 	cpu_switch_mm(mm->pgd, mm);
262 	enter_lazy_tlb(mm, current);
263 	local_flush_tlb_all();
264 
265 	printk("CPU%u: Booted secondary processor\n", cpu);
266 
267 	cpu_init();
268 	preempt_disable();
269 	trace_hardirqs_off();
270 
271 	/*
272 	 * Give the platform a chance to do its own initialisation.
273 	 */
274 	platform_secondary_init(cpu);
275 
276 	notify_cpu_starting(cpu);
277 
278 	calibrate_delay();
279 
280 	smp_store_cpu_info(cpu);
281 
282 	/*
283 	 * OK, now it's safe to let the boot CPU continue.  Wait for
284 	 * the CPU migration code to notice that the CPU is online
285 	 * before we continue - which happens after __cpu_up returns.
286 	 */
287 	set_cpu_online(cpu, true);
288 	complete(&cpu_running);
289 
290 	/*
291 	 * Setup the percpu timer for this CPU.
292 	 */
293 	percpu_timer_setup();
294 
295 	local_irq_enable();
296 	local_fiq_enable();
297 
298 	/*
299 	 * OK, it's off to the idle thread for us
300 	 */
301 	cpu_idle();
302 }
303 
304 void __init smp_cpus_done(unsigned int max_cpus)
305 {
306 	int cpu;
307 	unsigned long bogosum = 0;
308 
309 	for_each_online_cpu(cpu)
310 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
311 
312 	printk(KERN_INFO "SMP: Total of %d processors activated "
313 	       "(%lu.%02lu BogoMIPS).\n",
314 	       num_online_cpus(),
315 	       bogosum / (500000/HZ),
316 	       (bogosum / (5000/HZ)) % 100);
317 }
318 
319 void __init smp_prepare_boot_cpu(void)
320 {
321 	unsigned int cpu = smp_processor_id();
322 
323 	per_cpu(cpu_data, cpu).idle = current;
324 }
325 
326 void __init smp_prepare_cpus(unsigned int max_cpus)
327 {
328 	unsigned int ncores = num_possible_cpus();
329 
330 	init_cpu_topology();
331 
332 	smp_store_cpu_info(smp_processor_id());
333 
334 	/*
335 	 * are we trying to boot more cores than exist?
336 	 */
337 	if (max_cpus > ncores)
338 		max_cpus = ncores;
339 	if (ncores > 1 && max_cpus) {
340 		/*
341 		 * Enable the local timer or broadcast device for the
342 		 * boot CPU, but only if we have more than one CPU.
343 		 */
344 		percpu_timer_setup();
345 
346 		/*
347 		 * Initialise the present map, which describes the set of CPUs
348 		 * actually populated at the present time. A platform should
349 		 * re-initialize the map in platform_smp_prepare_cpus() if
350 		 * present != possible (e.g. physical hotplug).
351 		 */
352 		init_cpu_present(cpu_possible_mask);
353 
354 		/*
355 		 * Initialise the SCU if there are more than one CPU
356 		 * and let them know where to start.
357 		 */
358 		platform_smp_prepare_cpus(max_cpus);
359 	}
360 }
361 
362 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
363 
364 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
365 {
366 	smp_cross_call = fn;
367 }
368 
369 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
370 {
371 	smp_cross_call(mask, IPI_CALL_FUNC);
372 }
373 
374 void arch_send_call_function_single_ipi(int cpu)
375 {
376 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
377 }
378 
379 static const char *ipi_types[NR_IPI] = {
380 #define S(x,s)	[x - IPI_TIMER] = s
381 	S(IPI_TIMER, "Timer broadcast interrupts"),
382 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
383 	S(IPI_CALL_FUNC, "Function call interrupts"),
384 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
385 	S(IPI_CPU_STOP, "CPU stop interrupts"),
386 };
387 
388 void show_ipi_list(struct seq_file *p, int prec)
389 {
390 	unsigned int cpu, i;
391 
392 	for (i = 0; i < NR_IPI; i++) {
393 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
394 
395 		for_each_present_cpu(cpu)
396 			seq_printf(p, "%10u ",
397 				   __get_irq_stat(cpu, ipi_irqs[i]));
398 
399 		seq_printf(p, " %s\n", ipi_types[i]);
400 	}
401 }
402 
403 u64 smp_irq_stat_cpu(unsigned int cpu)
404 {
405 	u64 sum = 0;
406 	int i;
407 
408 	for (i = 0; i < NR_IPI; i++)
409 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
410 
411 	return sum;
412 }
413 
414 /*
415  * Timer (local or broadcast) support
416  */
417 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
418 
419 static void ipi_timer(void)
420 {
421 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
422 	evt->event_handler(evt);
423 }
424 
425 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
426 static void smp_timer_broadcast(const struct cpumask *mask)
427 {
428 	smp_cross_call(mask, IPI_TIMER);
429 }
430 #else
431 #define smp_timer_broadcast	NULL
432 #endif
433 
434 static void broadcast_timer_set_mode(enum clock_event_mode mode,
435 	struct clock_event_device *evt)
436 {
437 }
438 
439 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
440 {
441 	evt->name	= "dummy_timer";
442 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
443 			  CLOCK_EVT_FEAT_PERIODIC |
444 			  CLOCK_EVT_FEAT_DUMMY;
445 	evt->rating	= 400;
446 	evt->mult	= 1;
447 	evt->set_mode	= broadcast_timer_set_mode;
448 
449 	clockevents_register_device(evt);
450 }
451 
452 static struct local_timer_ops *lt_ops;
453 
454 #ifdef CONFIG_LOCAL_TIMERS
455 int local_timer_register(struct local_timer_ops *ops)
456 {
457 	if (lt_ops)
458 		return -EBUSY;
459 
460 	lt_ops = ops;
461 	return 0;
462 }
463 #endif
464 
465 static void __cpuinit percpu_timer_setup(void)
466 {
467 	unsigned int cpu = smp_processor_id();
468 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
469 
470 	evt->cpumask = cpumask_of(cpu);
471 	evt->broadcast = smp_timer_broadcast;
472 
473 	if (!lt_ops || lt_ops->setup(evt))
474 		broadcast_timer_setup(evt);
475 }
476 
477 #ifdef CONFIG_HOTPLUG_CPU
478 /*
479  * The generic clock events code purposely does not stop the local timer
480  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
481  * manually here.
482  */
483 static void percpu_timer_stop(void)
484 {
485 	unsigned int cpu = smp_processor_id();
486 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
487 
488 	if (lt_ops)
489 		lt_ops->stop(evt);
490 }
491 #endif
492 
493 static DEFINE_RAW_SPINLOCK(stop_lock);
494 
495 /*
496  * ipi_cpu_stop - handle IPI from smp_send_stop()
497  */
498 static void ipi_cpu_stop(unsigned int cpu)
499 {
500 	if (system_state == SYSTEM_BOOTING ||
501 	    system_state == SYSTEM_RUNNING) {
502 		raw_spin_lock(&stop_lock);
503 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
504 		dump_stack();
505 		raw_spin_unlock(&stop_lock);
506 	}
507 
508 	set_cpu_online(cpu, false);
509 
510 	local_fiq_disable();
511 	local_irq_disable();
512 
513 	while (1)
514 		cpu_relax();
515 }
516 
517 /*
518  * Main handler for inter-processor interrupts
519  */
520 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
521 {
522 	handle_IPI(ipinr, regs);
523 }
524 
525 void handle_IPI(int ipinr, struct pt_regs *regs)
526 {
527 	unsigned int cpu = smp_processor_id();
528 	struct pt_regs *old_regs = set_irq_regs(regs);
529 
530 	if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
531 		__inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
532 
533 	switch (ipinr) {
534 	case IPI_TIMER:
535 		irq_enter();
536 		ipi_timer();
537 		irq_exit();
538 		break;
539 
540 	case IPI_RESCHEDULE:
541 		scheduler_ipi();
542 		break;
543 
544 	case IPI_CALL_FUNC:
545 		irq_enter();
546 		generic_smp_call_function_interrupt();
547 		irq_exit();
548 		break;
549 
550 	case IPI_CALL_FUNC_SINGLE:
551 		irq_enter();
552 		generic_smp_call_function_single_interrupt();
553 		irq_exit();
554 		break;
555 
556 	case IPI_CPU_STOP:
557 		irq_enter();
558 		ipi_cpu_stop(cpu);
559 		irq_exit();
560 		break;
561 
562 	default:
563 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
564 		       cpu, ipinr);
565 		break;
566 	}
567 	set_irq_regs(old_regs);
568 }
569 
570 void smp_send_reschedule(int cpu)
571 {
572 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
573 }
574 
575 #ifdef CONFIG_HOTPLUG_CPU
576 static void smp_kill_cpus(cpumask_t *mask)
577 {
578 	unsigned int cpu;
579 	for_each_cpu(cpu, mask)
580 		platform_cpu_kill(cpu);
581 }
582 #else
583 static void smp_kill_cpus(cpumask_t *mask) { }
584 #endif
585 
586 void smp_send_stop(void)
587 {
588 	unsigned long timeout;
589 	struct cpumask mask;
590 
591 	cpumask_copy(&mask, cpu_online_mask);
592 	cpumask_clear_cpu(smp_processor_id(), &mask);
593 	smp_cross_call(&mask, IPI_CPU_STOP);
594 
595 	/* Wait up to one second for other CPUs to stop */
596 	timeout = USEC_PER_SEC;
597 	while (num_online_cpus() > 1 && timeout--)
598 		udelay(1);
599 
600 	if (num_online_cpus() > 1)
601 		pr_warning("SMP: failed to stop secondary CPUs\n");
602 
603 	smp_kill_cpus(&mask);
604 }
605 
606 /*
607  * not supported here
608  */
609 int setup_profiling_timer(unsigned int multiplier)
610 {
611 	return -EINVAL;
612 }
613