xref: /openbmc/linux/arch/arm/kernel/smp.c (revision cbdf59ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/bugs.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/procinfo.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54 
55 /*
56  * as from 2.5, kernels no longer have an init_tasks structure
57  * so we need some other way of telling a new secondary core
58  * where to place its SVC stack
59  */
60 struct secondary_data secondary_data;
61 
62 enum ipi_msg_type {
63 	IPI_WAKEUP,
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 	IPI_IRQ_WORK,
69 	IPI_COMPLETION,
70 	/*
71 	 * CPU_BACKTRACE is special and not included in NR_IPI
72 	 * or tracable with trace_ipi_*
73 	 */
74 	IPI_CPU_BACKTRACE,
75 	/*
76 	 * SGI8-15 can be reserved by secure firmware, and thus may
77 	 * not be usable by the kernel. Please keep the above limited
78 	 * to at most 8 entries.
79 	 */
80 };
81 
82 static DECLARE_COMPLETION(cpu_running);
83 
84 static struct smp_operations smp_ops __ro_after_init;
85 
86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88 	if (ops)
89 		smp_ops = *ops;
90 };
91 
92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95 	return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97 	return virt_to_phys(pgd);
98 #endif
99 }
100 
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104 	if (!cpu_vtable[cpu])
105 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106 
107 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109 
110 static void secondary_biglittle_init(void)
111 {
112 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117 	return 0;
118 }
119 
120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124 
125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127 	int ret;
128 
129 	if (!smp_ops.smp_boot_secondary)
130 		return -ENOSYS;
131 
132 	ret = secondary_biglittle_prepare(cpu);
133 	if (ret)
134 		return ret;
135 
136 	/*
137 	 * We need to tell the secondary core where to find
138 	 * its stack and the page tables.
139 	 */
140 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
143 #endif
144 
145 #ifdef CONFIG_MMU
146 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
147 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149 	sync_cache_w(&secondary_data);
150 
151 	/*
152 	 * Now bring the CPU into our world.
153 	 */
154 	ret = smp_ops.smp_boot_secondary(cpu, idle);
155 	if (ret == 0) {
156 		/*
157 		 * CPU was successfully started, wait for it
158 		 * to come online or time out.
159 		 */
160 		wait_for_completion_timeout(&cpu_running,
161 						 msecs_to_jiffies(1000));
162 
163 		if (!cpu_online(cpu)) {
164 			pr_crit("CPU%u: failed to come online\n", cpu);
165 			ret = -EIO;
166 		}
167 	} else {
168 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169 	}
170 
171 
172 	memset(&secondary_data, 0, sizeof(secondary_data));
173 	return ret;
174 }
175 
176 /* platform specific SMP operations */
177 void __init smp_init_cpus(void)
178 {
179 	if (smp_ops.smp_init_cpus)
180 		smp_ops.smp_init_cpus();
181 }
182 
183 int platform_can_secondary_boot(void)
184 {
185 	return !!smp_ops.smp_boot_secondary;
186 }
187 
188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191 	if (smp_ops.cpu_kill)
192 		return 1;
193 #endif
194 
195 	return 0;
196 }
197 
198 #ifdef CONFIG_HOTPLUG_CPU
199 static int platform_cpu_kill(unsigned int cpu)
200 {
201 	if (smp_ops.cpu_kill)
202 		return smp_ops.cpu_kill(cpu);
203 	return 1;
204 }
205 
206 static int platform_cpu_disable(unsigned int cpu)
207 {
208 	if (smp_ops.cpu_disable)
209 		return smp_ops.cpu_disable(cpu);
210 
211 	return 0;
212 }
213 
214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216 	/* cpu_die must be specified to support hotplug */
217 	if (!smp_ops.cpu_die)
218 		return 0;
219 
220 	if (smp_ops.cpu_can_disable)
221 		return smp_ops.cpu_can_disable(cpu);
222 
223 	/*
224 	 * By default, allow disabling all CPUs except the first one,
225 	 * since this is special on a lot of platforms, e.g. because
226 	 * of clock tick interrupts.
227 	 */
228 	return cpu != 0;
229 }
230 
231 /*
232  * __cpu_disable runs on the processor to be shutdown.
233  */
234 int __cpu_disable(void)
235 {
236 	unsigned int cpu = smp_processor_id();
237 	int ret;
238 
239 	ret = platform_cpu_disable(cpu);
240 	if (ret)
241 		return ret;
242 
243 	/*
244 	 * Take this CPU offline.  Once we clear this, we can't return,
245 	 * and we must not schedule until we're ready to give up the cpu.
246 	 */
247 	set_cpu_online(cpu, false);
248 
249 	/*
250 	 * OK - migrate IRQs away from this CPU
251 	 */
252 	irq_migrate_all_off_this_cpu();
253 
254 	/*
255 	 * Flush user cache and TLB mappings, and then remove this CPU
256 	 * from the vm mask set of all processes.
257 	 *
258 	 * Caches are flushed to the Level of Unification Inner Shareable
259 	 * to write-back dirty lines to unified caches shared by all CPUs.
260 	 */
261 	flush_cache_louis();
262 	local_flush_tlb_all();
263 
264 	return 0;
265 }
266 
267 static DECLARE_COMPLETION(cpu_died);
268 
269 /*
270  * called on the thread which is asking for a CPU to be shutdown -
271  * waits until shutdown has completed, or it is timed out.
272  */
273 void __cpu_die(unsigned int cpu)
274 {
275 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
276 		pr_err("CPU%u: cpu didn't die\n", cpu);
277 		return;
278 	}
279 	pr_debug("CPU%u: shutdown\n", cpu);
280 
281 	clear_tasks_mm_cpumask(cpu);
282 	/*
283 	 * platform_cpu_kill() is generally expected to do the powering off
284 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
285 	 * be done by the CPU which is dying in preference to supporting
286 	 * this call, but that means there is _no_ synchronisation between
287 	 * the requesting CPU and the dying CPU actually losing power.
288 	 */
289 	if (!platform_cpu_kill(cpu))
290 		pr_err("CPU%u: unable to kill\n", cpu);
291 }
292 
293 /*
294  * Called from the idle thread for the CPU which has been shutdown.
295  *
296  * Note that we disable IRQs here, but do not re-enable them
297  * before returning to the caller. This is also the behaviour
298  * of the other hotplug-cpu capable cores, so presumably coming
299  * out of idle fixes this.
300  */
301 void arch_cpu_idle_dead(void)
302 {
303 	unsigned int cpu = smp_processor_id();
304 
305 	idle_task_exit();
306 
307 	local_irq_disable();
308 
309 	/*
310 	 * Flush the data out of the L1 cache for this CPU.  This must be
311 	 * before the completion to ensure that data is safely written out
312 	 * before platform_cpu_kill() gets called - which may disable
313 	 * *this* CPU and power down its cache.
314 	 */
315 	flush_cache_louis();
316 
317 	/*
318 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
319 	 * this returns, power and/or clocks can be removed at any point
320 	 * from this CPU and its cache by platform_cpu_kill().
321 	 */
322 	complete(&cpu_died);
323 
324 	/*
325 	 * Ensure that the cache lines associated with that completion are
326 	 * written out.  This covers the case where _this_ CPU is doing the
327 	 * powering down, to ensure that the completion is visible to the
328 	 * CPU waiting for this one.
329 	 */
330 	flush_cache_louis();
331 
332 	/*
333 	 * The actual CPU shutdown procedure is at least platform (if not
334 	 * CPU) specific.  This may remove power, or it may simply spin.
335 	 *
336 	 * Platforms are generally expected *NOT* to return from this call,
337 	 * although there are some which do because they have no way to
338 	 * power down the CPU.  These platforms are the _only_ reason we
339 	 * have a return path which uses the fragment of assembly below.
340 	 *
341 	 * The return path should not be used for platforms which can
342 	 * power off the CPU.
343 	 */
344 	if (smp_ops.cpu_die)
345 		smp_ops.cpu_die(cpu);
346 
347 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
348 		cpu);
349 
350 	/*
351 	 * Do not return to the idle loop - jump back to the secondary
352 	 * cpu initialisation.  There's some initialisation which needs
353 	 * to be repeated to undo the effects of taking the CPU offline.
354 	 */
355 	__asm__("mov	sp, %0\n"
356 	"	mov	fp, #0\n"
357 	"	b	secondary_start_kernel"
358 		:
359 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
360 }
361 #endif /* CONFIG_HOTPLUG_CPU */
362 
363 /*
364  * Called by both boot and secondaries to move global data into
365  * per-processor storage.
366  */
367 static void smp_store_cpu_info(unsigned int cpuid)
368 {
369 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
370 
371 	cpu_info->loops_per_jiffy = loops_per_jiffy;
372 	cpu_info->cpuid = read_cpuid_id();
373 
374 	store_cpu_topology(cpuid);
375 	check_cpu_icache_size(cpuid);
376 }
377 
378 /*
379  * This is the secondary CPU boot entry.  We're using this CPUs
380  * idle thread stack, but a set of temporary page tables.
381  */
382 asmlinkage void secondary_start_kernel(void)
383 {
384 	struct mm_struct *mm = &init_mm;
385 	unsigned int cpu;
386 
387 	secondary_biglittle_init();
388 
389 	/*
390 	 * The identity mapping is uncached (strongly ordered), so
391 	 * switch away from it before attempting any exclusive accesses.
392 	 */
393 	cpu_switch_mm(mm->pgd, mm);
394 	local_flush_bp_all();
395 	enter_lazy_tlb(mm, current);
396 	local_flush_tlb_all();
397 
398 	/*
399 	 * All kernel threads share the same mm context; grab a
400 	 * reference and switch to it.
401 	 */
402 	cpu = smp_processor_id();
403 	mmgrab(mm);
404 	current->active_mm = mm;
405 	cpumask_set_cpu(cpu, mm_cpumask(mm));
406 
407 	cpu_init();
408 
409 #ifndef CONFIG_MMU
410 	setup_vectors_base();
411 #endif
412 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
413 
414 	preempt_disable();
415 	trace_hardirqs_off();
416 
417 	/*
418 	 * Give the platform a chance to do its own initialisation.
419 	 */
420 	if (smp_ops.smp_secondary_init)
421 		smp_ops.smp_secondary_init(cpu);
422 
423 	notify_cpu_starting(cpu);
424 
425 	calibrate_delay();
426 
427 	smp_store_cpu_info(cpu);
428 
429 	/*
430 	 * OK, now it's safe to let the boot CPU continue.  Wait for
431 	 * the CPU migration code to notice that the CPU is online
432 	 * before we continue - which happens after __cpu_up returns.
433 	 */
434 	set_cpu_online(cpu, true);
435 
436 	check_other_bugs();
437 
438 	complete(&cpu_running);
439 
440 	local_irq_enable();
441 	local_fiq_enable();
442 	local_abt_enable();
443 
444 	/*
445 	 * OK, it's off to the idle thread for us
446 	 */
447 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
448 }
449 
450 void __init smp_cpus_done(unsigned int max_cpus)
451 {
452 	int cpu;
453 	unsigned long bogosum = 0;
454 
455 	for_each_online_cpu(cpu)
456 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
457 
458 	printk(KERN_INFO "SMP: Total of %d processors activated "
459 	       "(%lu.%02lu BogoMIPS).\n",
460 	       num_online_cpus(),
461 	       bogosum / (500000/HZ),
462 	       (bogosum / (5000/HZ)) % 100);
463 
464 	hyp_mode_check();
465 }
466 
467 void __init smp_prepare_boot_cpu(void)
468 {
469 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
470 }
471 
472 void __init smp_prepare_cpus(unsigned int max_cpus)
473 {
474 	unsigned int ncores = num_possible_cpus();
475 
476 	init_cpu_topology();
477 
478 	smp_store_cpu_info(smp_processor_id());
479 
480 	/*
481 	 * are we trying to boot more cores than exist?
482 	 */
483 	if (max_cpus > ncores)
484 		max_cpus = ncores;
485 	if (ncores > 1 && max_cpus) {
486 		/*
487 		 * Initialise the present map, which describes the set of CPUs
488 		 * actually populated at the present time. A platform should
489 		 * re-initialize the map in the platforms smp_prepare_cpus()
490 		 * if present != possible (e.g. physical hotplug).
491 		 */
492 		init_cpu_present(cpu_possible_mask);
493 
494 		/*
495 		 * Initialise the SCU if there are more than one CPU
496 		 * and let them know where to start.
497 		 */
498 		if (smp_ops.smp_prepare_cpus)
499 			smp_ops.smp_prepare_cpus(max_cpus);
500 	}
501 }
502 
503 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
504 
505 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
506 {
507 	if (!__smp_cross_call)
508 		__smp_cross_call = fn;
509 }
510 
511 static const char *ipi_types[NR_IPI] __tracepoint_string = {
512 #define S(x,s)	[x] = s
513 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
514 	S(IPI_TIMER, "Timer broadcast interrupts"),
515 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
516 	S(IPI_CALL_FUNC, "Function call interrupts"),
517 	S(IPI_CPU_STOP, "CPU stop interrupts"),
518 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
519 	S(IPI_COMPLETION, "completion interrupts"),
520 };
521 
522 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
523 {
524 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
525 	__smp_cross_call(target, ipinr);
526 }
527 
528 void show_ipi_list(struct seq_file *p, int prec)
529 {
530 	unsigned int cpu, i;
531 
532 	for (i = 0; i < NR_IPI; i++) {
533 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
534 
535 		for_each_online_cpu(cpu)
536 			seq_printf(p, "%10u ",
537 				   __get_irq_stat(cpu, ipi_irqs[i]));
538 
539 		seq_printf(p, " %s\n", ipi_types[i]);
540 	}
541 }
542 
543 u64 smp_irq_stat_cpu(unsigned int cpu)
544 {
545 	u64 sum = 0;
546 	int i;
547 
548 	for (i = 0; i < NR_IPI; i++)
549 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
550 
551 	return sum;
552 }
553 
554 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
555 {
556 	smp_cross_call(mask, IPI_CALL_FUNC);
557 }
558 
559 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
560 {
561 	smp_cross_call(mask, IPI_WAKEUP);
562 }
563 
564 void arch_send_call_function_single_ipi(int cpu)
565 {
566 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
567 }
568 
569 #ifdef CONFIG_IRQ_WORK
570 void arch_irq_work_raise(void)
571 {
572 	if (arch_irq_work_has_interrupt())
573 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
574 }
575 #endif
576 
577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
578 void tick_broadcast(const struct cpumask *mask)
579 {
580 	smp_cross_call(mask, IPI_TIMER);
581 }
582 #endif
583 
584 static DEFINE_RAW_SPINLOCK(stop_lock);
585 
586 /*
587  * ipi_cpu_stop - handle IPI from smp_send_stop()
588  */
589 static void ipi_cpu_stop(unsigned int cpu)
590 {
591 	if (system_state <= SYSTEM_RUNNING) {
592 		raw_spin_lock(&stop_lock);
593 		pr_crit("CPU%u: stopping\n", cpu);
594 		dump_stack();
595 		raw_spin_unlock(&stop_lock);
596 	}
597 
598 	set_cpu_online(cpu, false);
599 
600 	local_fiq_disable();
601 	local_irq_disable();
602 
603 	while (1) {
604 		cpu_relax();
605 		wfe();
606 	}
607 }
608 
609 static DEFINE_PER_CPU(struct completion *, cpu_completion);
610 
611 int register_ipi_completion(struct completion *completion, int cpu)
612 {
613 	per_cpu(cpu_completion, cpu) = completion;
614 	return IPI_COMPLETION;
615 }
616 
617 static void ipi_complete(unsigned int cpu)
618 {
619 	complete(per_cpu(cpu_completion, cpu));
620 }
621 
622 /*
623  * Main handler for inter-processor interrupts
624  */
625 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
626 {
627 	handle_IPI(ipinr, regs);
628 }
629 
630 void handle_IPI(int ipinr, struct pt_regs *regs)
631 {
632 	unsigned int cpu = smp_processor_id();
633 	struct pt_regs *old_regs = set_irq_regs(regs);
634 
635 	if ((unsigned)ipinr < NR_IPI) {
636 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
637 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
638 	}
639 
640 	switch (ipinr) {
641 	case IPI_WAKEUP:
642 		break;
643 
644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
645 	case IPI_TIMER:
646 		irq_enter();
647 		tick_receive_broadcast();
648 		irq_exit();
649 		break;
650 #endif
651 
652 	case IPI_RESCHEDULE:
653 		scheduler_ipi();
654 		break;
655 
656 	case IPI_CALL_FUNC:
657 		irq_enter();
658 		generic_smp_call_function_interrupt();
659 		irq_exit();
660 		break;
661 
662 	case IPI_CPU_STOP:
663 		irq_enter();
664 		ipi_cpu_stop(cpu);
665 		irq_exit();
666 		break;
667 
668 #ifdef CONFIG_IRQ_WORK
669 	case IPI_IRQ_WORK:
670 		irq_enter();
671 		irq_work_run();
672 		irq_exit();
673 		break;
674 #endif
675 
676 	case IPI_COMPLETION:
677 		irq_enter();
678 		ipi_complete(cpu);
679 		irq_exit();
680 		break;
681 
682 	case IPI_CPU_BACKTRACE:
683 		printk_nmi_enter();
684 		irq_enter();
685 		nmi_cpu_backtrace(regs);
686 		irq_exit();
687 		printk_nmi_exit();
688 		break;
689 
690 	default:
691 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
692 		        cpu, ipinr);
693 		break;
694 	}
695 
696 	if ((unsigned)ipinr < NR_IPI)
697 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
698 	set_irq_regs(old_regs);
699 }
700 
701 void smp_send_reschedule(int cpu)
702 {
703 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
704 }
705 
706 void smp_send_stop(void)
707 {
708 	unsigned long timeout;
709 	struct cpumask mask;
710 
711 	cpumask_copy(&mask, cpu_online_mask);
712 	cpumask_clear_cpu(smp_processor_id(), &mask);
713 	if (!cpumask_empty(&mask))
714 		smp_cross_call(&mask, IPI_CPU_STOP);
715 
716 	/* Wait up to one second for other CPUs to stop */
717 	timeout = USEC_PER_SEC;
718 	while (num_online_cpus() > 1 && timeout--)
719 		udelay(1);
720 
721 	if (num_online_cpus() > 1)
722 		pr_warn("SMP: failed to stop secondary CPUs\n");
723 }
724 
725 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
726  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
727  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
728  * kdump fails. So split out the panic_smp_self_stop() and add
729  * set_cpu_online(smp_processor_id(), false).
730  */
731 void panic_smp_self_stop(void)
732 {
733 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
734 	         smp_processor_id());
735 	set_cpu_online(smp_processor_id(), false);
736 	while (1)
737 		cpu_relax();
738 }
739 
740 /*
741  * not supported here
742  */
743 int setup_profiling_timer(unsigned int multiplier)
744 {
745 	return -EINVAL;
746 }
747 
748 #ifdef CONFIG_CPU_FREQ
749 
750 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
751 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
752 static unsigned long global_l_p_j_ref;
753 static unsigned long global_l_p_j_ref_freq;
754 
755 static int cpufreq_callback(struct notifier_block *nb,
756 					unsigned long val, void *data)
757 {
758 	struct cpufreq_freqs *freq = data;
759 	struct cpumask *cpus = freq->policy->cpus;
760 	int cpu, first = cpumask_first(cpus);
761 	unsigned int lpj;
762 
763 	if (freq->flags & CPUFREQ_CONST_LOOPS)
764 		return NOTIFY_OK;
765 
766 	if (!per_cpu(l_p_j_ref, first)) {
767 		for_each_cpu(cpu, cpus) {
768 			per_cpu(l_p_j_ref, cpu) =
769 				per_cpu(cpu_data, cpu).loops_per_jiffy;
770 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
771 		}
772 
773 		if (!global_l_p_j_ref) {
774 			global_l_p_j_ref = loops_per_jiffy;
775 			global_l_p_j_ref_freq = freq->old;
776 		}
777 	}
778 
779 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
780 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
781 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
782 						global_l_p_j_ref_freq,
783 						freq->new);
784 
785 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
786 				    per_cpu(l_p_j_ref_freq, first), freq->new);
787 		for_each_cpu(cpu, cpus)
788 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
789 	}
790 	return NOTIFY_OK;
791 }
792 
793 static struct notifier_block cpufreq_notifier = {
794 	.notifier_call  = cpufreq_callback,
795 };
796 
797 static int __init register_cpufreq_notifier(void)
798 {
799 	return cpufreq_register_notifier(&cpufreq_notifier,
800 						CPUFREQ_TRANSITION_NOTIFIER);
801 }
802 core_initcall(register_cpufreq_notifier);
803 
804 #endif
805 
806 static void raise_nmi(cpumask_t *mask)
807 {
808 	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
809 }
810 
811 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
812 {
813 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
814 }
815