xref: /openbmc/linux/arch/arm/kernel/smp.c (revision c4ee0af3)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 /*
51  * as from 2.5, kernels no longer have an init_tasks structure
52  * so we need some other way of telling a new secondary core
53  * where to place its SVC stack
54  */
55 struct secondary_data secondary_data;
56 
57 /*
58  * control for which core is the next to come out of the secondary
59  * boot "holding pen"
60  */
61 volatile int pen_release = -1;
62 
63 enum ipi_msg_type {
64 	IPI_WAKEUP,
65 	IPI_TIMER,
66 	IPI_RESCHEDULE,
67 	IPI_CALL_FUNC,
68 	IPI_CALL_FUNC_SINGLE,
69 	IPI_CPU_STOP,
70 	IPI_IRQ_WORK,
71 	IPI_COMPLETION,
72 };
73 
74 static DECLARE_COMPLETION(cpu_running);
75 
76 static struct smp_operations smp_ops;
77 
78 void __init smp_set_ops(struct smp_operations *ops)
79 {
80 	if (ops)
81 		smp_ops = *ops;
82 };
83 
84 static unsigned long get_arch_pgd(pgd_t *pgd)
85 {
86 	phys_addr_t pgdir = virt_to_idmap(pgd);
87 	BUG_ON(pgdir & ARCH_PGD_MASK);
88 	return pgdir >> ARCH_PGD_SHIFT;
89 }
90 
91 int __cpu_up(unsigned int cpu, struct task_struct *idle)
92 {
93 	int ret;
94 
95 	/*
96 	 * We need to tell the secondary core where to find
97 	 * its stack and the page tables.
98 	 */
99 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100 #ifdef CONFIG_ARM_MPU
101 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102 #endif
103 
104 #ifdef CONFIG_MMU
105 	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107 #endif
108 	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
109 	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
110 
111 	/*
112 	 * Now bring the CPU into our world.
113 	 */
114 	ret = boot_secondary(cpu, idle);
115 	if (ret == 0) {
116 		/*
117 		 * CPU was successfully started, wait for it
118 		 * to come online or time out.
119 		 */
120 		wait_for_completion_timeout(&cpu_running,
121 						 msecs_to_jiffies(1000));
122 
123 		if (!cpu_online(cpu)) {
124 			pr_crit("CPU%u: failed to come online\n", cpu);
125 			ret = -EIO;
126 		}
127 	} else {
128 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
129 	}
130 
131 
132 	memset(&secondary_data, 0, sizeof(secondary_data));
133 	return ret;
134 }
135 
136 /* platform specific SMP operations */
137 void __init smp_init_cpus(void)
138 {
139 	if (smp_ops.smp_init_cpus)
140 		smp_ops.smp_init_cpus();
141 }
142 
143 int boot_secondary(unsigned int cpu, struct task_struct *idle)
144 {
145 	if (smp_ops.smp_boot_secondary)
146 		return smp_ops.smp_boot_secondary(cpu, idle);
147 	return -ENOSYS;
148 }
149 
150 int platform_can_cpu_hotplug(void)
151 {
152 #ifdef CONFIG_HOTPLUG_CPU
153 	if (smp_ops.cpu_kill)
154 		return 1;
155 #endif
156 
157 	return 0;
158 }
159 
160 #ifdef CONFIG_HOTPLUG_CPU
161 static int platform_cpu_kill(unsigned int cpu)
162 {
163 	if (smp_ops.cpu_kill)
164 		return smp_ops.cpu_kill(cpu);
165 	return 1;
166 }
167 
168 static int platform_cpu_disable(unsigned int cpu)
169 {
170 	if (smp_ops.cpu_disable)
171 		return smp_ops.cpu_disable(cpu);
172 
173 	/*
174 	 * By default, allow disabling all CPUs except the first one,
175 	 * since this is special on a lot of platforms, e.g. because
176 	 * of clock tick interrupts.
177 	 */
178 	return cpu == 0 ? -EPERM : 0;
179 }
180 /*
181  * __cpu_disable runs on the processor to be shutdown.
182  */
183 int __cpu_disable(void)
184 {
185 	unsigned int cpu = smp_processor_id();
186 	int ret;
187 
188 	ret = platform_cpu_disable(cpu);
189 	if (ret)
190 		return ret;
191 
192 	/*
193 	 * Take this CPU offline.  Once we clear this, we can't return,
194 	 * and we must not schedule until we're ready to give up the cpu.
195 	 */
196 	set_cpu_online(cpu, false);
197 
198 	/*
199 	 * OK - migrate IRQs away from this CPU
200 	 */
201 	migrate_irqs();
202 
203 	/*
204 	 * Flush user cache and TLB mappings, and then remove this CPU
205 	 * from the vm mask set of all processes.
206 	 *
207 	 * Caches are flushed to the Level of Unification Inner Shareable
208 	 * to write-back dirty lines to unified caches shared by all CPUs.
209 	 */
210 	flush_cache_louis();
211 	local_flush_tlb_all();
212 
213 	clear_tasks_mm_cpumask(cpu);
214 
215 	return 0;
216 }
217 
218 static DECLARE_COMPLETION(cpu_died);
219 
220 /*
221  * called on the thread which is asking for a CPU to be shutdown -
222  * waits until shutdown has completed, or it is timed out.
223  */
224 void __cpu_die(unsigned int cpu)
225 {
226 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227 		pr_err("CPU%u: cpu didn't die\n", cpu);
228 		return;
229 	}
230 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231 
232 	/*
233 	 * platform_cpu_kill() is generally expected to do the powering off
234 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
235 	 * be done by the CPU which is dying in preference to supporting
236 	 * this call, but that means there is _no_ synchronisation between
237 	 * the requesting CPU and the dying CPU actually losing power.
238 	 */
239 	if (!platform_cpu_kill(cpu))
240 		printk("CPU%u: unable to kill\n", cpu);
241 }
242 
243 /*
244  * Called from the idle thread for the CPU which has been shutdown.
245  *
246  * Note that we disable IRQs here, but do not re-enable them
247  * before returning to the caller. This is also the behaviour
248  * of the other hotplug-cpu capable cores, so presumably coming
249  * out of idle fixes this.
250  */
251 void __ref cpu_die(void)
252 {
253 	unsigned int cpu = smp_processor_id();
254 
255 	idle_task_exit();
256 
257 	local_irq_disable();
258 
259 	/*
260 	 * Flush the data out of the L1 cache for this CPU.  This must be
261 	 * before the completion to ensure that data is safely written out
262 	 * before platform_cpu_kill() gets called - which may disable
263 	 * *this* CPU and power down its cache.
264 	 */
265 	flush_cache_louis();
266 
267 	/*
268 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
269 	 * this returns, power and/or clocks can be removed at any point
270 	 * from this CPU and its cache by platform_cpu_kill().
271 	 */
272 	complete(&cpu_died);
273 
274 	/*
275 	 * Ensure that the cache lines associated with that completion are
276 	 * written out.  This covers the case where _this_ CPU is doing the
277 	 * powering down, to ensure that the completion is visible to the
278 	 * CPU waiting for this one.
279 	 */
280 	flush_cache_louis();
281 
282 	/*
283 	 * The actual CPU shutdown procedure is at least platform (if not
284 	 * CPU) specific.  This may remove power, or it may simply spin.
285 	 *
286 	 * Platforms are generally expected *NOT* to return from this call,
287 	 * although there are some which do because they have no way to
288 	 * power down the CPU.  These platforms are the _only_ reason we
289 	 * have a return path which uses the fragment of assembly below.
290 	 *
291 	 * The return path should not be used for platforms which can
292 	 * power off the CPU.
293 	 */
294 	if (smp_ops.cpu_die)
295 		smp_ops.cpu_die(cpu);
296 
297 	/*
298 	 * Do not return to the idle loop - jump back to the secondary
299 	 * cpu initialisation.  There's some initialisation which needs
300 	 * to be repeated to undo the effects of taking the CPU offline.
301 	 */
302 	__asm__("mov	sp, %0\n"
303 	"	mov	fp, #0\n"
304 	"	b	secondary_start_kernel"
305 		:
306 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
307 }
308 #endif /* CONFIG_HOTPLUG_CPU */
309 
310 /*
311  * Called by both boot and secondaries to move global data into
312  * per-processor storage.
313  */
314 static void smp_store_cpu_info(unsigned int cpuid)
315 {
316 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
317 
318 	cpu_info->loops_per_jiffy = loops_per_jiffy;
319 	cpu_info->cpuid = read_cpuid_id();
320 
321 	store_cpu_topology(cpuid);
322 }
323 
324 /*
325  * This is the secondary CPU boot entry.  We're using this CPUs
326  * idle thread stack, but a set of temporary page tables.
327  */
328 asmlinkage void secondary_start_kernel(void)
329 {
330 	struct mm_struct *mm = &init_mm;
331 	unsigned int cpu;
332 
333 	/*
334 	 * The identity mapping is uncached (strongly ordered), so
335 	 * switch away from it before attempting any exclusive accesses.
336 	 */
337 	cpu_switch_mm(mm->pgd, mm);
338 	local_flush_bp_all();
339 	enter_lazy_tlb(mm, current);
340 	local_flush_tlb_all();
341 
342 	/*
343 	 * All kernel threads share the same mm context; grab a
344 	 * reference and switch to it.
345 	 */
346 	cpu = smp_processor_id();
347 	atomic_inc(&mm->mm_count);
348 	current->active_mm = mm;
349 	cpumask_set_cpu(cpu, mm_cpumask(mm));
350 
351 	cpu_init();
352 
353 	printk("CPU%u: Booted secondary processor\n", cpu);
354 
355 	preempt_disable();
356 	trace_hardirqs_off();
357 
358 	/*
359 	 * Give the platform a chance to do its own initialisation.
360 	 */
361 	if (smp_ops.smp_secondary_init)
362 		smp_ops.smp_secondary_init(cpu);
363 
364 	notify_cpu_starting(cpu);
365 
366 	calibrate_delay();
367 
368 	smp_store_cpu_info(cpu);
369 
370 	/*
371 	 * OK, now it's safe to let the boot CPU continue.  Wait for
372 	 * the CPU migration code to notice that the CPU is online
373 	 * before we continue - which happens after __cpu_up returns.
374 	 */
375 	set_cpu_online(cpu, true);
376 	complete(&cpu_running);
377 
378 	local_irq_enable();
379 	local_fiq_enable();
380 
381 	/*
382 	 * OK, it's off to the idle thread for us
383 	 */
384 	cpu_startup_entry(CPUHP_ONLINE);
385 }
386 
387 void __init smp_cpus_done(unsigned int max_cpus)
388 {
389 	printk(KERN_INFO "SMP: Total of %d processors activated.\n",
390 	       num_online_cpus());
391 
392 	hyp_mode_check();
393 }
394 
395 void __init smp_prepare_boot_cpu(void)
396 {
397 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
398 }
399 
400 void __init smp_prepare_cpus(unsigned int max_cpus)
401 {
402 	unsigned int ncores = num_possible_cpus();
403 
404 	init_cpu_topology();
405 
406 	smp_store_cpu_info(smp_processor_id());
407 
408 	/*
409 	 * are we trying to boot more cores than exist?
410 	 */
411 	if (max_cpus > ncores)
412 		max_cpus = ncores;
413 	if (ncores > 1 && max_cpus) {
414 		/*
415 		 * Initialise the present map, which describes the set of CPUs
416 		 * actually populated at the present time. A platform should
417 		 * re-initialize the map in the platforms smp_prepare_cpus()
418 		 * if present != possible (e.g. physical hotplug).
419 		 */
420 		init_cpu_present(cpu_possible_mask);
421 
422 		/*
423 		 * Initialise the SCU if there are more than one CPU
424 		 * and let them know where to start.
425 		 */
426 		if (smp_ops.smp_prepare_cpus)
427 			smp_ops.smp_prepare_cpus(max_cpus);
428 	}
429 }
430 
431 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
432 
433 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
434 {
435 	if (!smp_cross_call)
436 		smp_cross_call = fn;
437 }
438 
439 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
440 {
441 	smp_cross_call(mask, IPI_CALL_FUNC);
442 }
443 
444 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
445 {
446 	smp_cross_call(mask, IPI_WAKEUP);
447 }
448 
449 void arch_send_call_function_single_ipi(int cpu)
450 {
451 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
452 }
453 
454 #ifdef CONFIG_IRQ_WORK
455 void arch_irq_work_raise(void)
456 {
457 	if (is_smp())
458 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
459 }
460 #endif
461 
462 static const char *ipi_types[NR_IPI] = {
463 #define S(x,s)	[x] = s
464 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
465 	S(IPI_TIMER, "Timer broadcast interrupts"),
466 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
467 	S(IPI_CALL_FUNC, "Function call interrupts"),
468 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
469 	S(IPI_CPU_STOP, "CPU stop interrupts"),
470 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
471 	S(IPI_COMPLETION, "completion interrupts"),
472 };
473 
474 void show_ipi_list(struct seq_file *p, int prec)
475 {
476 	unsigned int cpu, i;
477 
478 	for (i = 0; i < NR_IPI; i++) {
479 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
480 
481 		for_each_online_cpu(cpu)
482 			seq_printf(p, "%10u ",
483 				   __get_irq_stat(cpu, ipi_irqs[i]));
484 
485 		seq_printf(p, " %s\n", ipi_types[i]);
486 	}
487 }
488 
489 u64 smp_irq_stat_cpu(unsigned int cpu)
490 {
491 	u64 sum = 0;
492 	int i;
493 
494 	for (i = 0; i < NR_IPI; i++)
495 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
496 
497 	return sum;
498 }
499 
500 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
501 void tick_broadcast(const struct cpumask *mask)
502 {
503 	smp_cross_call(mask, IPI_TIMER);
504 }
505 #endif
506 
507 static DEFINE_RAW_SPINLOCK(stop_lock);
508 
509 /*
510  * ipi_cpu_stop - handle IPI from smp_send_stop()
511  */
512 static void ipi_cpu_stop(unsigned int cpu)
513 {
514 	if (system_state == SYSTEM_BOOTING ||
515 	    system_state == SYSTEM_RUNNING) {
516 		raw_spin_lock(&stop_lock);
517 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
518 		dump_stack();
519 		raw_spin_unlock(&stop_lock);
520 	}
521 
522 	set_cpu_online(cpu, false);
523 
524 	local_fiq_disable();
525 	local_irq_disable();
526 
527 	while (1)
528 		cpu_relax();
529 }
530 
531 static DEFINE_PER_CPU(struct completion *, cpu_completion);
532 
533 int register_ipi_completion(struct completion *completion, int cpu)
534 {
535 	per_cpu(cpu_completion, cpu) = completion;
536 	return IPI_COMPLETION;
537 }
538 
539 static void ipi_complete(unsigned int cpu)
540 {
541 	complete(per_cpu(cpu_completion, cpu));
542 }
543 
544 /*
545  * Main handler for inter-processor interrupts
546  */
547 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
548 {
549 	handle_IPI(ipinr, regs);
550 }
551 
552 void handle_IPI(int ipinr, struct pt_regs *regs)
553 {
554 	unsigned int cpu = smp_processor_id();
555 	struct pt_regs *old_regs = set_irq_regs(regs);
556 
557 	if (ipinr < NR_IPI)
558 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
559 
560 	switch (ipinr) {
561 	case IPI_WAKEUP:
562 		break;
563 
564 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
565 	case IPI_TIMER:
566 		irq_enter();
567 		tick_receive_broadcast();
568 		irq_exit();
569 		break;
570 #endif
571 
572 	case IPI_RESCHEDULE:
573 		scheduler_ipi();
574 		break;
575 
576 	case IPI_CALL_FUNC:
577 		irq_enter();
578 		generic_smp_call_function_interrupt();
579 		irq_exit();
580 		break;
581 
582 	case IPI_CALL_FUNC_SINGLE:
583 		irq_enter();
584 		generic_smp_call_function_single_interrupt();
585 		irq_exit();
586 		break;
587 
588 	case IPI_CPU_STOP:
589 		irq_enter();
590 		ipi_cpu_stop(cpu);
591 		irq_exit();
592 		break;
593 
594 #ifdef CONFIG_IRQ_WORK
595 	case IPI_IRQ_WORK:
596 		irq_enter();
597 		irq_work_run();
598 		irq_exit();
599 		break;
600 #endif
601 
602 	case IPI_COMPLETION:
603 		irq_enter();
604 		ipi_complete(cpu);
605 		irq_exit();
606 		break;
607 
608 	default:
609 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
610 		       cpu, ipinr);
611 		break;
612 	}
613 	set_irq_regs(old_regs);
614 }
615 
616 void smp_send_reschedule(int cpu)
617 {
618 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
619 }
620 
621 void smp_send_stop(void)
622 {
623 	unsigned long timeout;
624 	struct cpumask mask;
625 
626 	cpumask_copy(&mask, cpu_online_mask);
627 	cpumask_clear_cpu(smp_processor_id(), &mask);
628 	if (!cpumask_empty(&mask))
629 		smp_cross_call(&mask, IPI_CPU_STOP);
630 
631 	/* Wait up to one second for other CPUs to stop */
632 	timeout = USEC_PER_SEC;
633 	while (num_online_cpus() > 1 && timeout--)
634 		udelay(1);
635 
636 	if (num_online_cpus() > 1)
637 		pr_warning("SMP: failed to stop secondary CPUs\n");
638 }
639 
640 /*
641  * not supported here
642  */
643 int setup_profiling_timer(unsigned int multiplier)
644 {
645 	return -EINVAL;
646 }
647 
648 #ifdef CONFIG_CPU_FREQ
649 
650 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
651 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
652 static unsigned long global_l_p_j_ref;
653 static unsigned long global_l_p_j_ref_freq;
654 
655 static int cpufreq_callback(struct notifier_block *nb,
656 					unsigned long val, void *data)
657 {
658 	struct cpufreq_freqs *freq = data;
659 	int cpu = freq->cpu;
660 
661 	if (freq->flags & CPUFREQ_CONST_LOOPS)
662 		return NOTIFY_OK;
663 
664 	if (!per_cpu(l_p_j_ref, cpu)) {
665 		per_cpu(l_p_j_ref, cpu) =
666 			per_cpu(cpu_data, cpu).loops_per_jiffy;
667 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
668 		if (!global_l_p_j_ref) {
669 			global_l_p_j_ref = loops_per_jiffy;
670 			global_l_p_j_ref_freq = freq->old;
671 		}
672 	}
673 
674 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
675 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
676 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
677 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
678 						global_l_p_j_ref_freq,
679 						freq->new);
680 		per_cpu(cpu_data, cpu).loops_per_jiffy =
681 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
682 					per_cpu(l_p_j_ref_freq, cpu),
683 					freq->new);
684 	}
685 	return NOTIFY_OK;
686 }
687 
688 static struct notifier_block cpufreq_notifier = {
689 	.notifier_call  = cpufreq_callback,
690 };
691 
692 static int __init register_cpufreq_notifier(void)
693 {
694 	return cpufreq_register_notifier(&cpufreq_notifier,
695 						CPUFREQ_TRANSITION_NOTIFIER);
696 }
697 core_initcall(register_cpufreq_notifier);
698 
699 #endif
700