xref: /openbmc/linux/arch/arm/kernel/smp.c (revision b627b4ed)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cpu.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/ptrace.h>
35 
36 /*
37  * as from 2.5, kernels no longer have an init_tasks structure
38  * so we need some other way of telling a new secondary core
39  * where to place its SVC stack
40  */
41 struct secondary_data secondary_data;
42 
43 /*
44  * structures for inter-processor calls
45  * - A collection of single bit ipi messages.
46  */
47 struct ipi_data {
48 	spinlock_t lock;
49 	unsigned long ipi_count;
50 	unsigned long bits;
51 };
52 
53 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
54 	.lock	= SPIN_LOCK_UNLOCKED,
55 };
56 
57 enum ipi_msg_type {
58 	IPI_TIMER,
59 	IPI_RESCHEDULE,
60 	IPI_CALL_FUNC,
61 	IPI_CALL_FUNC_SINGLE,
62 	IPI_CPU_STOP,
63 };
64 
65 int __cpuinit __cpu_up(unsigned int cpu)
66 {
67 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
68 	struct task_struct *idle = ci->idle;
69 	pgd_t *pgd;
70 	pmd_t *pmd;
71 	int ret;
72 
73 	/*
74 	 * Spawn a new process manually, if not already done.
75 	 * Grab a pointer to its task struct so we can mess with it
76 	 */
77 	if (!idle) {
78 		idle = fork_idle(cpu);
79 		if (IS_ERR(idle)) {
80 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
81 			return PTR_ERR(idle);
82 		}
83 		ci->idle = idle;
84 	}
85 
86 	/*
87 	 * Allocate initial page tables to allow the new CPU to
88 	 * enable the MMU safely.  This essentially means a set
89 	 * of our "standard" page tables, with the addition of
90 	 * a 1:1 mapping for the physical address of the kernel.
91 	 */
92 	pgd = pgd_alloc(&init_mm);
93 	pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
94 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
95 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
96 	flush_pmd_entry(pmd);
97 
98 	/*
99 	 * We need to tell the secondary core where to find
100 	 * its stack and the page tables.
101 	 */
102 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
103 	secondary_data.pgdir = virt_to_phys(pgd);
104 	wmb();
105 
106 	/*
107 	 * Now bring the CPU into our world.
108 	 */
109 	ret = boot_secondary(cpu, idle);
110 	if (ret == 0) {
111 		unsigned long timeout;
112 
113 		/*
114 		 * CPU was successfully started, wait for it
115 		 * to come online or time out.
116 		 */
117 		timeout = jiffies + HZ;
118 		while (time_before(jiffies, timeout)) {
119 			if (cpu_online(cpu))
120 				break;
121 
122 			udelay(10);
123 			barrier();
124 		}
125 
126 		if (!cpu_online(cpu))
127 			ret = -EIO;
128 	}
129 
130 	secondary_data.stack = NULL;
131 	secondary_data.pgdir = 0;
132 
133 	*pmd = __pmd(0);
134 	clean_pmd_entry(pmd);
135 	pgd_free(&init_mm, pgd);
136 
137 	if (ret) {
138 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
139 
140 		/*
141 		 * FIXME: We need to clean up the new idle thread. --rmk
142 		 */
143 	}
144 
145 	return ret;
146 }
147 
148 #ifdef CONFIG_HOTPLUG_CPU
149 /*
150  * __cpu_disable runs on the processor to be shutdown.
151  */
152 int __cpuexit __cpu_disable(void)
153 {
154 	unsigned int cpu = smp_processor_id();
155 	struct task_struct *p;
156 	int ret;
157 
158 	ret = mach_cpu_disable(cpu);
159 	if (ret)
160 		return ret;
161 
162 	/*
163 	 * Take this CPU offline.  Once we clear this, we can't return,
164 	 * and we must not schedule until we're ready to give up the cpu.
165 	 */
166 	cpu_clear(cpu, cpu_online_map);
167 
168 	/*
169 	 * OK - migrate IRQs away from this CPU
170 	 */
171 	migrate_irqs();
172 
173 	/*
174 	 * Stop the local timer for this CPU.
175 	 */
176 	local_timer_stop();
177 
178 	/*
179 	 * Flush user cache and TLB mappings, and then remove this CPU
180 	 * from the vm mask set of all processes.
181 	 */
182 	flush_cache_all();
183 	local_flush_tlb_all();
184 
185 	read_lock(&tasklist_lock);
186 	for_each_process(p) {
187 		if (p->mm)
188 			cpu_clear(cpu, p->mm->cpu_vm_mask);
189 	}
190 	read_unlock(&tasklist_lock);
191 
192 	return 0;
193 }
194 
195 /*
196  * called on the thread which is asking for a CPU to be shutdown -
197  * waits until shutdown has completed, or it is timed out.
198  */
199 void __cpuexit __cpu_die(unsigned int cpu)
200 {
201 	if (!platform_cpu_kill(cpu))
202 		printk("CPU%u: unable to kill\n", cpu);
203 }
204 
205 /*
206  * Called from the idle thread for the CPU which has been shutdown.
207  *
208  * Note that we disable IRQs here, but do not re-enable them
209  * before returning to the caller. This is also the behaviour
210  * of the other hotplug-cpu capable cores, so presumably coming
211  * out of idle fixes this.
212  */
213 void __cpuexit cpu_die(void)
214 {
215 	unsigned int cpu = smp_processor_id();
216 
217 	local_irq_disable();
218 	idle_task_exit();
219 
220 	/*
221 	 * actual CPU shutdown procedure is at least platform (if not
222 	 * CPU) specific
223 	 */
224 	platform_cpu_die(cpu);
225 
226 	/*
227 	 * Do not return to the idle loop - jump back to the secondary
228 	 * cpu initialisation.  There's some initialisation which needs
229 	 * to be repeated to undo the effects of taking the CPU offline.
230 	 */
231 	__asm__("mov	sp, %0\n"
232 	"	b	secondary_start_kernel"
233 		:
234 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
235 }
236 #endif /* CONFIG_HOTPLUG_CPU */
237 
238 /*
239  * This is the secondary CPU boot entry.  We're using this CPUs
240  * idle thread stack, but a set of temporary page tables.
241  */
242 asmlinkage void __cpuinit secondary_start_kernel(void)
243 {
244 	struct mm_struct *mm = &init_mm;
245 	unsigned int cpu = smp_processor_id();
246 
247 	printk("CPU%u: Booted secondary processor\n", cpu);
248 
249 	/*
250 	 * All kernel threads share the same mm context; grab a
251 	 * reference and switch to it.
252 	 */
253 	atomic_inc(&mm->mm_users);
254 	atomic_inc(&mm->mm_count);
255 	current->active_mm = mm;
256 	cpu_set(cpu, mm->cpu_vm_mask);
257 	cpu_switch_mm(mm->pgd, mm);
258 	enter_lazy_tlb(mm, current);
259 	local_flush_tlb_all();
260 
261 	cpu_init();
262 	preempt_disable();
263 
264 	/*
265 	 * Give the platform a chance to do its own initialisation.
266 	 */
267 	platform_secondary_init(cpu);
268 
269 	/*
270 	 * Enable local interrupts.
271 	 */
272 	notify_cpu_starting(cpu);
273 	local_irq_enable();
274 	local_fiq_enable();
275 
276 	/*
277 	 * Setup local timer for this CPU.
278 	 */
279 	local_timer_setup();
280 
281 	calibrate_delay();
282 
283 	smp_store_cpu_info(cpu);
284 
285 	/*
286 	 * OK, now it's safe to let the boot CPU continue
287 	 */
288 	cpu_set(cpu, cpu_online_map);
289 
290 	/*
291 	 * OK, it's off to the idle thread for us
292 	 */
293 	cpu_idle();
294 }
295 
296 /*
297  * Called by both boot and secondaries to move global data into
298  * per-processor storage.
299  */
300 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
301 {
302 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
303 
304 	cpu_info->loops_per_jiffy = loops_per_jiffy;
305 }
306 
307 void __init smp_cpus_done(unsigned int max_cpus)
308 {
309 	int cpu;
310 	unsigned long bogosum = 0;
311 
312 	for_each_online_cpu(cpu)
313 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
314 
315 	printk(KERN_INFO "SMP: Total of %d processors activated "
316 	       "(%lu.%02lu BogoMIPS).\n",
317 	       num_online_cpus(),
318 	       bogosum / (500000/HZ),
319 	       (bogosum / (5000/HZ)) % 100);
320 }
321 
322 void __init smp_prepare_boot_cpu(void)
323 {
324 	unsigned int cpu = smp_processor_id();
325 
326 	per_cpu(cpu_data, cpu).idle = current;
327 }
328 
329 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
330 {
331 	unsigned long flags;
332 	unsigned int cpu;
333 
334 	local_irq_save(flags);
335 
336 	for_each_cpu_mask(cpu, callmap) {
337 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
338 
339 		spin_lock(&ipi->lock);
340 		ipi->bits |= 1 << msg;
341 		spin_unlock(&ipi->lock);
342 	}
343 
344 	/*
345 	 * Call the platform specific cross-CPU call function.
346 	 */
347 	smp_cross_call(callmap);
348 
349 	local_irq_restore(flags);
350 }
351 
352 void arch_send_call_function_ipi(cpumask_t mask)
353 {
354 	send_ipi_message(mask, IPI_CALL_FUNC);
355 }
356 
357 void arch_send_call_function_single_ipi(int cpu)
358 {
359 	send_ipi_message(cpumask_of_cpu(cpu), IPI_CALL_FUNC_SINGLE);
360 }
361 
362 void show_ipi_list(struct seq_file *p)
363 {
364 	unsigned int cpu;
365 
366 	seq_puts(p, "IPI:");
367 
368 	for_each_present_cpu(cpu)
369 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
370 
371 	seq_putc(p, '\n');
372 }
373 
374 void show_local_irqs(struct seq_file *p)
375 {
376 	unsigned int cpu;
377 
378 	seq_printf(p, "LOC: ");
379 
380 	for_each_present_cpu(cpu)
381 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
382 
383 	seq_putc(p, '\n');
384 }
385 
386 static void ipi_timer(void)
387 {
388 	irq_enter();
389 	local_timer_interrupt();
390 	irq_exit();
391 }
392 
393 #ifdef CONFIG_LOCAL_TIMERS
394 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
395 {
396 	struct pt_regs *old_regs = set_irq_regs(regs);
397 	int cpu = smp_processor_id();
398 
399 	if (local_timer_ack()) {
400 		irq_stat[cpu].local_timer_irqs++;
401 		ipi_timer();
402 	}
403 
404 	set_irq_regs(old_regs);
405 }
406 #endif
407 
408 static DEFINE_SPINLOCK(stop_lock);
409 
410 /*
411  * ipi_cpu_stop - handle IPI from smp_send_stop()
412  */
413 static void ipi_cpu_stop(unsigned int cpu)
414 {
415 	spin_lock(&stop_lock);
416 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
417 	dump_stack();
418 	spin_unlock(&stop_lock);
419 
420 	cpu_clear(cpu, cpu_online_map);
421 
422 	local_fiq_disable();
423 	local_irq_disable();
424 
425 	while (1)
426 		cpu_relax();
427 }
428 
429 /*
430  * Main handler for inter-processor interrupts
431  *
432  * For ARM, the ipimask now only identifies a single
433  * category of IPI (Bit 1 IPIs have been replaced by a
434  * different mechanism):
435  *
436  *  Bit 0 - Inter-processor function call
437  */
438 asmlinkage void __exception do_IPI(struct pt_regs *regs)
439 {
440 	unsigned int cpu = smp_processor_id();
441 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
442 	struct pt_regs *old_regs = set_irq_regs(regs);
443 
444 	ipi->ipi_count++;
445 
446 	for (;;) {
447 		unsigned long msgs;
448 
449 		spin_lock(&ipi->lock);
450 		msgs = ipi->bits;
451 		ipi->bits = 0;
452 		spin_unlock(&ipi->lock);
453 
454 		if (!msgs)
455 			break;
456 
457 		do {
458 			unsigned nextmsg;
459 
460 			nextmsg = msgs & -msgs;
461 			msgs &= ~nextmsg;
462 			nextmsg = ffz(~nextmsg);
463 
464 			switch (nextmsg) {
465 			case IPI_TIMER:
466 				ipi_timer();
467 				break;
468 
469 			case IPI_RESCHEDULE:
470 				/*
471 				 * nothing more to do - eveything is
472 				 * done on the interrupt return path
473 				 */
474 				break;
475 
476 			case IPI_CALL_FUNC:
477 				generic_smp_call_function_interrupt();
478 				break;
479 
480 			case IPI_CALL_FUNC_SINGLE:
481 				generic_smp_call_function_single_interrupt();
482 				break;
483 
484 			case IPI_CPU_STOP:
485 				ipi_cpu_stop(cpu);
486 				break;
487 
488 			default:
489 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
490 				       cpu, nextmsg);
491 				break;
492 			}
493 		} while (msgs);
494 	}
495 
496 	set_irq_regs(old_regs);
497 }
498 
499 void smp_send_reschedule(int cpu)
500 {
501 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
502 }
503 
504 void smp_send_timer(void)
505 {
506 	cpumask_t mask = cpu_online_map;
507 	cpu_clear(smp_processor_id(), mask);
508 	send_ipi_message(mask, IPI_TIMER);
509 }
510 
511 void smp_timer_broadcast(cpumask_t mask)
512 {
513 	send_ipi_message(mask, IPI_TIMER);
514 }
515 
516 void smp_send_stop(void)
517 {
518 	cpumask_t mask = cpu_online_map;
519 	cpu_clear(smp_processor_id(), mask);
520 	send_ipi_message(mask, IPI_CPU_STOP);
521 }
522 
523 /*
524  * not supported here
525  */
526 int setup_profiling_timer(unsigned int multiplier)
527 {
528 	return -EINVAL;
529 }
530 
531 static int
532 on_each_cpu_mask(void (*func)(void *), void *info, int wait, cpumask_t mask)
533 {
534 	int ret = 0;
535 
536 	preempt_disable();
537 
538 	ret = smp_call_function_mask(mask, func, info, wait);
539 	if (cpu_isset(smp_processor_id(), mask))
540 		func(info);
541 
542 	preempt_enable();
543 
544 	return ret;
545 }
546 
547 /**********************************************************************/
548 
549 /*
550  * TLB operations
551  */
552 struct tlb_args {
553 	struct vm_area_struct *ta_vma;
554 	unsigned long ta_start;
555 	unsigned long ta_end;
556 };
557 
558 static inline void ipi_flush_tlb_all(void *ignored)
559 {
560 	local_flush_tlb_all();
561 }
562 
563 static inline void ipi_flush_tlb_mm(void *arg)
564 {
565 	struct mm_struct *mm = (struct mm_struct *)arg;
566 
567 	local_flush_tlb_mm(mm);
568 }
569 
570 static inline void ipi_flush_tlb_page(void *arg)
571 {
572 	struct tlb_args *ta = (struct tlb_args *)arg;
573 
574 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
575 }
576 
577 static inline void ipi_flush_tlb_kernel_page(void *arg)
578 {
579 	struct tlb_args *ta = (struct tlb_args *)arg;
580 
581 	local_flush_tlb_kernel_page(ta->ta_start);
582 }
583 
584 static inline void ipi_flush_tlb_range(void *arg)
585 {
586 	struct tlb_args *ta = (struct tlb_args *)arg;
587 
588 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
589 }
590 
591 static inline void ipi_flush_tlb_kernel_range(void *arg)
592 {
593 	struct tlb_args *ta = (struct tlb_args *)arg;
594 
595 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
596 }
597 
598 void flush_tlb_all(void)
599 {
600 	on_each_cpu(ipi_flush_tlb_all, NULL, 1);
601 }
602 
603 void flush_tlb_mm(struct mm_struct *mm)
604 {
605 	cpumask_t mask = mm->cpu_vm_mask;
606 
607 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mask);
608 }
609 
610 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
611 {
612 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
613 	struct tlb_args ta;
614 
615 	ta.ta_vma = vma;
616 	ta.ta_start = uaddr;
617 
618 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mask);
619 }
620 
621 void flush_tlb_kernel_page(unsigned long kaddr)
622 {
623 	struct tlb_args ta;
624 
625 	ta.ta_start = kaddr;
626 
627 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
628 }
629 
630 void flush_tlb_range(struct vm_area_struct *vma,
631                      unsigned long start, unsigned long end)
632 {
633 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
634 	struct tlb_args ta;
635 
636 	ta.ta_vma = vma;
637 	ta.ta_start = start;
638 	ta.ta_end = end;
639 
640 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mask);
641 }
642 
643 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
644 {
645 	struct tlb_args ta;
646 
647 	ta.ta_start = start;
648 	ta.ta_end = end;
649 
650 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
651 }
652