xref: /openbmc/linux/arch/arm/kernel/smp.c (revision ae40e94f)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32 
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57 
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64 
65 enum ipi_msg_type {
66 	IPI_WAKEUP,
67 	IPI_TIMER,
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_IRQ_WORK,
72 	IPI_COMPLETION,
73 	IPI_CPU_BACKTRACE,
74 	/*
75 	 * SGI8-15 can be reserved by secure firmware, and thus may
76 	 * not be usable by the kernel. Please keep the above limited
77 	 * to at most 8 entries.
78 	 */
79 };
80 
81 static DECLARE_COMPLETION(cpu_running);
82 
83 static struct smp_operations smp_ops __ro_after_init;
84 
85 void __init smp_set_ops(const struct smp_operations *ops)
86 {
87 	if (ops)
88 		smp_ops = *ops;
89 };
90 
91 static unsigned long get_arch_pgd(pgd_t *pgd)
92 {
93 #ifdef CONFIG_ARM_LPAE
94 	return __phys_to_pfn(virt_to_phys(pgd));
95 #else
96 	return virt_to_phys(pgd);
97 #endif
98 }
99 
100 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
101 static int secondary_biglittle_prepare(unsigned int cpu)
102 {
103 	if (!cpu_vtable[cpu])
104 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
105 
106 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
107 }
108 
109 static void secondary_biglittle_init(void)
110 {
111 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
112 }
113 #else
114 static int secondary_biglittle_prepare(unsigned int cpu)
115 {
116 	return 0;
117 }
118 
119 static void secondary_biglittle_init(void)
120 {
121 }
122 #endif
123 
124 int __cpu_up(unsigned int cpu, struct task_struct *idle)
125 {
126 	int ret;
127 
128 	if (!smp_ops.smp_boot_secondary)
129 		return -ENOSYS;
130 
131 	ret = secondary_biglittle_prepare(cpu);
132 	if (ret)
133 		return ret;
134 
135 	/*
136 	 * We need to tell the secondary core where to find
137 	 * its stack and the page tables.
138 	 */
139 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
140 #ifdef CONFIG_ARM_MPU
141 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
142 #endif
143 
144 #ifdef CONFIG_MMU
145 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
146 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
147 #endif
148 	sync_cache_w(&secondary_data);
149 
150 	/*
151 	 * Now bring the CPU into our world.
152 	 */
153 	ret = smp_ops.smp_boot_secondary(cpu, idle);
154 	if (ret == 0) {
155 		/*
156 		 * CPU was successfully started, wait for it
157 		 * to come online or time out.
158 		 */
159 		wait_for_completion_timeout(&cpu_running,
160 						 msecs_to_jiffies(1000));
161 
162 		if (!cpu_online(cpu)) {
163 			pr_crit("CPU%u: failed to come online\n", cpu);
164 			ret = -EIO;
165 		}
166 	} else {
167 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
168 	}
169 
170 
171 	memset(&secondary_data, 0, sizeof(secondary_data));
172 	return ret;
173 }
174 
175 /* platform specific SMP operations */
176 void __init smp_init_cpus(void)
177 {
178 	if (smp_ops.smp_init_cpus)
179 		smp_ops.smp_init_cpus();
180 }
181 
182 int platform_can_secondary_boot(void)
183 {
184 	return !!smp_ops.smp_boot_secondary;
185 }
186 
187 int platform_can_cpu_hotplug(void)
188 {
189 #ifdef CONFIG_HOTPLUG_CPU
190 	if (smp_ops.cpu_kill)
191 		return 1;
192 #endif
193 
194 	return 0;
195 }
196 
197 #ifdef CONFIG_HOTPLUG_CPU
198 static int platform_cpu_kill(unsigned int cpu)
199 {
200 	if (smp_ops.cpu_kill)
201 		return smp_ops.cpu_kill(cpu);
202 	return 1;
203 }
204 
205 static int platform_cpu_disable(unsigned int cpu)
206 {
207 	if (smp_ops.cpu_disable)
208 		return smp_ops.cpu_disable(cpu);
209 
210 	return 0;
211 }
212 
213 int platform_can_hotplug_cpu(unsigned int cpu)
214 {
215 	/* cpu_die must be specified to support hotplug */
216 	if (!smp_ops.cpu_die)
217 		return 0;
218 
219 	if (smp_ops.cpu_can_disable)
220 		return smp_ops.cpu_can_disable(cpu);
221 
222 	/*
223 	 * By default, allow disabling all CPUs except the first one,
224 	 * since this is special on a lot of platforms, e.g. because
225 	 * of clock tick interrupts.
226 	 */
227 	return cpu != 0;
228 }
229 
230 /*
231  * __cpu_disable runs on the processor to be shutdown.
232  */
233 int __cpu_disable(void)
234 {
235 	unsigned int cpu = smp_processor_id();
236 	int ret;
237 
238 	ret = platform_cpu_disable(cpu);
239 	if (ret)
240 		return ret;
241 
242 	/*
243 	 * Take this CPU offline.  Once we clear this, we can't return,
244 	 * and we must not schedule until we're ready to give up the cpu.
245 	 */
246 	set_cpu_online(cpu, false);
247 
248 	/*
249 	 * OK - migrate IRQs away from this CPU
250 	 */
251 	irq_migrate_all_off_this_cpu();
252 
253 	/*
254 	 * Flush user cache and TLB mappings, and then remove this CPU
255 	 * from the vm mask set of all processes.
256 	 *
257 	 * Caches are flushed to the Level of Unification Inner Shareable
258 	 * to write-back dirty lines to unified caches shared by all CPUs.
259 	 */
260 	flush_cache_louis();
261 	local_flush_tlb_all();
262 
263 	return 0;
264 }
265 
266 static DECLARE_COMPLETION(cpu_died);
267 
268 /*
269  * called on the thread which is asking for a CPU to be shutdown -
270  * waits until shutdown has completed, or it is timed out.
271  */
272 void __cpu_die(unsigned int cpu)
273 {
274 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
275 		pr_err("CPU%u: cpu didn't die\n", cpu);
276 		return;
277 	}
278 	pr_debug("CPU%u: shutdown\n", cpu);
279 
280 	clear_tasks_mm_cpumask(cpu);
281 	/*
282 	 * platform_cpu_kill() is generally expected to do the powering off
283 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
284 	 * be done by the CPU which is dying in preference to supporting
285 	 * this call, but that means there is _no_ synchronisation between
286 	 * the requesting CPU and the dying CPU actually losing power.
287 	 */
288 	if (!platform_cpu_kill(cpu))
289 		pr_err("CPU%u: unable to kill\n", cpu);
290 }
291 
292 /*
293  * Called from the idle thread for the CPU which has been shutdown.
294  *
295  * Note that we disable IRQs here, but do not re-enable them
296  * before returning to the caller. This is also the behaviour
297  * of the other hotplug-cpu capable cores, so presumably coming
298  * out of idle fixes this.
299  */
300 void arch_cpu_idle_dead(void)
301 {
302 	unsigned int cpu = smp_processor_id();
303 
304 	idle_task_exit();
305 
306 	local_irq_disable();
307 
308 	/*
309 	 * Flush the data out of the L1 cache for this CPU.  This must be
310 	 * before the completion to ensure that data is safely written out
311 	 * before platform_cpu_kill() gets called - which may disable
312 	 * *this* CPU and power down its cache.
313 	 */
314 	flush_cache_louis();
315 
316 	/*
317 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
318 	 * this returns, power and/or clocks can be removed at any point
319 	 * from this CPU and its cache by platform_cpu_kill().
320 	 */
321 	complete(&cpu_died);
322 
323 	/*
324 	 * Ensure that the cache lines associated with that completion are
325 	 * written out.  This covers the case where _this_ CPU is doing the
326 	 * powering down, to ensure that the completion is visible to the
327 	 * CPU waiting for this one.
328 	 */
329 	flush_cache_louis();
330 
331 	/*
332 	 * The actual CPU shutdown procedure is at least platform (if not
333 	 * CPU) specific.  This may remove power, or it may simply spin.
334 	 *
335 	 * Platforms are generally expected *NOT* to return from this call,
336 	 * although there are some which do because they have no way to
337 	 * power down the CPU.  These platforms are the _only_ reason we
338 	 * have a return path which uses the fragment of assembly below.
339 	 *
340 	 * The return path should not be used for platforms which can
341 	 * power off the CPU.
342 	 */
343 	if (smp_ops.cpu_die)
344 		smp_ops.cpu_die(cpu);
345 
346 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
347 		cpu);
348 
349 	/*
350 	 * Do not return to the idle loop - jump back to the secondary
351 	 * cpu initialisation.  There's some initialisation which needs
352 	 * to be repeated to undo the effects of taking the CPU offline.
353 	 */
354 	__asm__("mov	sp, %0\n"
355 	"	mov	fp, #0\n"
356 	"	b	secondary_start_kernel"
357 		:
358 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
359 }
360 #endif /* CONFIG_HOTPLUG_CPU */
361 
362 /*
363  * Called by both boot and secondaries to move global data into
364  * per-processor storage.
365  */
366 static void smp_store_cpu_info(unsigned int cpuid)
367 {
368 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
369 
370 	cpu_info->loops_per_jiffy = loops_per_jiffy;
371 	cpu_info->cpuid = read_cpuid_id();
372 
373 	store_cpu_topology(cpuid);
374 }
375 
376 /*
377  * This is the secondary CPU boot entry.  We're using this CPUs
378  * idle thread stack, but a set of temporary page tables.
379  */
380 asmlinkage void secondary_start_kernel(void)
381 {
382 	struct mm_struct *mm = &init_mm;
383 	unsigned int cpu;
384 
385 	secondary_biglittle_init();
386 
387 	/*
388 	 * The identity mapping is uncached (strongly ordered), so
389 	 * switch away from it before attempting any exclusive accesses.
390 	 */
391 	cpu_switch_mm(mm->pgd, mm);
392 	local_flush_bp_all();
393 	enter_lazy_tlb(mm, current);
394 	local_flush_tlb_all();
395 
396 	/*
397 	 * All kernel threads share the same mm context; grab a
398 	 * reference and switch to it.
399 	 */
400 	cpu = smp_processor_id();
401 	mmgrab(mm);
402 	current->active_mm = mm;
403 	cpumask_set_cpu(cpu, mm_cpumask(mm));
404 
405 	cpu_init();
406 
407 #ifndef CONFIG_MMU
408 	setup_vectors_base();
409 #endif
410 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
411 
412 	preempt_disable();
413 	trace_hardirqs_off();
414 
415 	/*
416 	 * Give the platform a chance to do its own initialisation.
417 	 */
418 	if (smp_ops.smp_secondary_init)
419 		smp_ops.smp_secondary_init(cpu);
420 
421 	notify_cpu_starting(cpu);
422 
423 	calibrate_delay();
424 
425 	smp_store_cpu_info(cpu);
426 
427 	/*
428 	 * OK, now it's safe to let the boot CPU continue.  Wait for
429 	 * the CPU migration code to notice that the CPU is online
430 	 * before we continue - which happens after __cpu_up returns.
431 	 */
432 	set_cpu_online(cpu, true);
433 
434 	check_other_bugs();
435 
436 	complete(&cpu_running);
437 
438 	local_irq_enable();
439 	local_fiq_enable();
440 	local_abt_enable();
441 
442 	/*
443 	 * OK, it's off to the idle thread for us
444 	 */
445 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
446 }
447 
448 void __init smp_cpus_done(unsigned int max_cpus)
449 {
450 	int cpu;
451 	unsigned long bogosum = 0;
452 
453 	for_each_online_cpu(cpu)
454 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
455 
456 	printk(KERN_INFO "SMP: Total of %d processors activated "
457 	       "(%lu.%02lu BogoMIPS).\n",
458 	       num_online_cpus(),
459 	       bogosum / (500000/HZ),
460 	       (bogosum / (5000/HZ)) % 100);
461 
462 	hyp_mode_check();
463 }
464 
465 void __init smp_prepare_boot_cpu(void)
466 {
467 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
468 }
469 
470 void __init smp_prepare_cpus(unsigned int max_cpus)
471 {
472 	unsigned int ncores = num_possible_cpus();
473 
474 	init_cpu_topology();
475 
476 	smp_store_cpu_info(smp_processor_id());
477 
478 	/*
479 	 * are we trying to boot more cores than exist?
480 	 */
481 	if (max_cpus > ncores)
482 		max_cpus = ncores;
483 	if (ncores > 1 && max_cpus) {
484 		/*
485 		 * Initialise the present map, which describes the set of CPUs
486 		 * actually populated at the present time. A platform should
487 		 * re-initialize the map in the platforms smp_prepare_cpus()
488 		 * if present != possible (e.g. physical hotplug).
489 		 */
490 		init_cpu_present(cpu_possible_mask);
491 
492 		/*
493 		 * Initialise the SCU if there are more than one CPU
494 		 * and let them know where to start.
495 		 */
496 		if (smp_ops.smp_prepare_cpus)
497 			smp_ops.smp_prepare_cpus(max_cpus);
498 	}
499 }
500 
501 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
502 
503 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
504 {
505 	if (!__smp_cross_call)
506 		__smp_cross_call = fn;
507 }
508 
509 static const char *ipi_types[NR_IPI] __tracepoint_string = {
510 #define S(x,s)	[x] = s
511 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
512 	S(IPI_TIMER, "Timer broadcast interrupts"),
513 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
514 	S(IPI_CALL_FUNC, "Function call interrupts"),
515 	S(IPI_CPU_STOP, "CPU stop interrupts"),
516 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
517 	S(IPI_COMPLETION, "completion interrupts"),
518 };
519 
520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521 {
522 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
523 	__smp_cross_call(target, ipinr);
524 }
525 
526 void show_ipi_list(struct seq_file *p, int prec)
527 {
528 	unsigned int cpu, i;
529 
530 	for (i = 0; i < NR_IPI; i++) {
531 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532 
533 		for_each_online_cpu(cpu)
534 			seq_printf(p, "%10u ",
535 				   __get_irq_stat(cpu, ipi_irqs[i]));
536 
537 		seq_printf(p, " %s\n", ipi_types[i]);
538 	}
539 }
540 
541 u64 smp_irq_stat_cpu(unsigned int cpu)
542 {
543 	u64 sum = 0;
544 	int i;
545 
546 	for (i = 0; i < NR_IPI; i++)
547 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
548 
549 	return sum;
550 }
551 
552 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
553 {
554 	smp_cross_call(mask, IPI_CALL_FUNC);
555 }
556 
557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
558 {
559 	smp_cross_call(mask, IPI_WAKEUP);
560 }
561 
562 void arch_send_call_function_single_ipi(int cpu)
563 {
564 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
565 }
566 
567 #ifdef CONFIG_IRQ_WORK
568 void arch_irq_work_raise(void)
569 {
570 	if (arch_irq_work_has_interrupt())
571 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572 }
573 #endif
574 
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578 	smp_cross_call(mask, IPI_TIMER);
579 }
580 #endif
581 
582 static DEFINE_RAW_SPINLOCK(stop_lock);
583 
584 /*
585  * ipi_cpu_stop - handle IPI from smp_send_stop()
586  */
587 static void ipi_cpu_stop(unsigned int cpu)
588 {
589 	if (system_state <= SYSTEM_RUNNING) {
590 		raw_spin_lock(&stop_lock);
591 		pr_crit("CPU%u: stopping\n", cpu);
592 		dump_stack();
593 		raw_spin_unlock(&stop_lock);
594 	}
595 
596 	set_cpu_online(cpu, false);
597 
598 	local_fiq_disable();
599 	local_irq_disable();
600 
601 	while (1) {
602 		cpu_relax();
603 		wfe();
604 	}
605 }
606 
607 static DEFINE_PER_CPU(struct completion *, cpu_completion);
608 
609 int register_ipi_completion(struct completion *completion, int cpu)
610 {
611 	per_cpu(cpu_completion, cpu) = completion;
612 	return IPI_COMPLETION;
613 }
614 
615 static void ipi_complete(unsigned int cpu)
616 {
617 	complete(per_cpu(cpu_completion, cpu));
618 }
619 
620 /*
621  * Main handler for inter-processor interrupts
622  */
623 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
624 {
625 	handle_IPI(ipinr, regs);
626 }
627 
628 void handle_IPI(int ipinr, struct pt_regs *regs)
629 {
630 	unsigned int cpu = smp_processor_id();
631 	struct pt_regs *old_regs = set_irq_regs(regs);
632 
633 	if ((unsigned)ipinr < NR_IPI) {
634 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
635 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
636 	}
637 
638 	switch (ipinr) {
639 	case IPI_WAKEUP:
640 		break;
641 
642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643 	case IPI_TIMER:
644 		irq_enter();
645 		tick_receive_broadcast();
646 		irq_exit();
647 		break;
648 #endif
649 
650 	case IPI_RESCHEDULE:
651 		scheduler_ipi();
652 		break;
653 
654 	case IPI_CALL_FUNC:
655 		irq_enter();
656 		generic_smp_call_function_interrupt();
657 		irq_exit();
658 		break;
659 
660 	case IPI_CPU_STOP:
661 		irq_enter();
662 		ipi_cpu_stop(cpu);
663 		irq_exit();
664 		break;
665 
666 #ifdef CONFIG_IRQ_WORK
667 	case IPI_IRQ_WORK:
668 		irq_enter();
669 		irq_work_run();
670 		irq_exit();
671 		break;
672 #endif
673 
674 	case IPI_COMPLETION:
675 		irq_enter();
676 		ipi_complete(cpu);
677 		irq_exit();
678 		break;
679 
680 	case IPI_CPU_BACKTRACE:
681 		printk_nmi_enter();
682 		irq_enter();
683 		nmi_cpu_backtrace(regs);
684 		irq_exit();
685 		printk_nmi_exit();
686 		break;
687 
688 	default:
689 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690 		        cpu, ipinr);
691 		break;
692 	}
693 
694 	if ((unsigned)ipinr < NR_IPI)
695 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696 	set_irq_regs(old_regs);
697 }
698 
699 void smp_send_reschedule(int cpu)
700 {
701 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
702 }
703 
704 void smp_send_stop(void)
705 {
706 	unsigned long timeout;
707 	struct cpumask mask;
708 
709 	cpumask_copy(&mask, cpu_online_mask);
710 	cpumask_clear_cpu(smp_processor_id(), &mask);
711 	if (!cpumask_empty(&mask))
712 		smp_cross_call(&mask, IPI_CPU_STOP);
713 
714 	/* Wait up to one second for other CPUs to stop */
715 	timeout = USEC_PER_SEC;
716 	while (num_online_cpus() > 1 && timeout--)
717 		udelay(1);
718 
719 	if (num_online_cpus() > 1)
720 		pr_warn("SMP: failed to stop secondary CPUs\n");
721 }
722 
723 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
724  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
725  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
726  * kdump fails. So split out the panic_smp_self_stop() and add
727  * set_cpu_online(smp_processor_id(), false).
728  */
729 void panic_smp_self_stop(void)
730 {
731 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
732 	         smp_processor_id());
733 	set_cpu_online(smp_processor_id(), false);
734 	while (1)
735 		cpu_relax();
736 }
737 
738 /*
739  * not supported here
740  */
741 int setup_profiling_timer(unsigned int multiplier)
742 {
743 	return -EINVAL;
744 }
745 
746 #ifdef CONFIG_CPU_FREQ
747 
748 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
750 static unsigned long global_l_p_j_ref;
751 static unsigned long global_l_p_j_ref_freq;
752 
753 static int cpufreq_callback(struct notifier_block *nb,
754 					unsigned long val, void *data)
755 {
756 	struct cpufreq_freqs *freq = data;
757 	int cpu = freq->cpu;
758 
759 	if (freq->flags & CPUFREQ_CONST_LOOPS)
760 		return NOTIFY_OK;
761 
762 	if (!per_cpu(l_p_j_ref, cpu)) {
763 		per_cpu(l_p_j_ref, cpu) =
764 			per_cpu(cpu_data, cpu).loops_per_jiffy;
765 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
766 		if (!global_l_p_j_ref) {
767 			global_l_p_j_ref = loops_per_jiffy;
768 			global_l_p_j_ref_freq = freq->old;
769 		}
770 	}
771 
772 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
773 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
774 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
775 						global_l_p_j_ref_freq,
776 						freq->new);
777 		per_cpu(cpu_data, cpu).loops_per_jiffy =
778 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
779 					per_cpu(l_p_j_ref_freq, cpu),
780 					freq->new);
781 	}
782 	return NOTIFY_OK;
783 }
784 
785 static struct notifier_block cpufreq_notifier = {
786 	.notifier_call  = cpufreq_callback,
787 };
788 
789 static int __init register_cpufreq_notifier(void)
790 {
791 	return cpufreq_register_notifier(&cpufreq_notifier,
792 						CPUFREQ_TRANSITION_NOTIFIER);
793 }
794 core_initcall(register_cpufreq_notifier);
795 
796 #endif
797 
798 static void raise_nmi(cpumask_t *mask)
799 {
800 	smp_cross_call(mask, IPI_CPU_BACKTRACE);
801 }
802 
803 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
804 {
805 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
806 }
807