1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/seq_file.h> 25 #include <linux/irq.h> 26 #include <linux/nmi.h> 27 #include <linux/percpu.h> 28 #include <linux/clockchips.h> 29 #include <linux/completion.h> 30 #include <linux/cpufreq.h> 31 #include <linux/irq_work.h> 32 33 #include <linux/atomic.h> 34 #include <asm/bugs.h> 35 #include <asm/smp.h> 36 #include <asm/cacheflush.h> 37 #include <asm/cpu.h> 38 #include <asm/cputype.h> 39 #include <asm/exception.h> 40 #include <asm/idmap.h> 41 #include <asm/topology.h> 42 #include <asm/mmu_context.h> 43 #include <asm/pgtable.h> 44 #include <asm/pgalloc.h> 45 #include <asm/procinfo.h> 46 #include <asm/processor.h> 47 #include <asm/sections.h> 48 #include <asm/tlbflush.h> 49 #include <asm/ptrace.h> 50 #include <asm/smp_plat.h> 51 #include <asm/virt.h> 52 #include <asm/mach/arch.h> 53 #include <asm/mpu.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ipi.h> 57 58 /* 59 * as from 2.5, kernels no longer have an init_tasks structure 60 * so we need some other way of telling a new secondary core 61 * where to place its SVC stack 62 */ 63 struct secondary_data secondary_data; 64 65 enum ipi_msg_type { 66 IPI_WAKEUP, 67 IPI_TIMER, 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 IPI_IRQ_WORK, 72 IPI_COMPLETION, 73 IPI_CPU_BACKTRACE, 74 /* 75 * SGI8-15 can be reserved by secure firmware, and thus may 76 * not be usable by the kernel. Please keep the above limited 77 * to at most 8 entries. 78 */ 79 }; 80 81 static DECLARE_COMPLETION(cpu_running); 82 83 static struct smp_operations smp_ops __ro_after_init; 84 85 void __init smp_set_ops(const struct smp_operations *ops) 86 { 87 if (ops) 88 smp_ops = *ops; 89 }; 90 91 static unsigned long get_arch_pgd(pgd_t *pgd) 92 { 93 #ifdef CONFIG_ARM_LPAE 94 return __phys_to_pfn(virt_to_phys(pgd)); 95 #else 96 return virt_to_phys(pgd); 97 #endif 98 } 99 100 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 101 static int secondary_biglittle_prepare(unsigned int cpu) 102 { 103 if (!cpu_vtable[cpu]) 104 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 105 106 return cpu_vtable[cpu] ? 0 : -ENOMEM; 107 } 108 109 static void secondary_biglittle_init(void) 110 { 111 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 112 } 113 #else 114 static int secondary_biglittle_prepare(unsigned int cpu) 115 { 116 return 0; 117 } 118 119 static void secondary_biglittle_init(void) 120 { 121 } 122 #endif 123 124 int __cpu_up(unsigned int cpu, struct task_struct *idle) 125 { 126 int ret; 127 128 if (!smp_ops.smp_boot_secondary) 129 return -ENOSYS; 130 131 ret = secondary_biglittle_prepare(cpu); 132 if (ret) 133 return ret; 134 135 /* 136 * We need to tell the secondary core where to find 137 * its stack and the page tables. 138 */ 139 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 140 #ifdef CONFIG_ARM_MPU 141 secondary_data.mpu_rgn_info = &mpu_rgn_info; 142 #endif 143 144 #ifdef CONFIG_MMU 145 secondary_data.pgdir = virt_to_phys(idmap_pgd); 146 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 147 #endif 148 sync_cache_w(&secondary_data); 149 150 /* 151 * Now bring the CPU into our world. 152 */ 153 ret = smp_ops.smp_boot_secondary(cpu, idle); 154 if (ret == 0) { 155 /* 156 * CPU was successfully started, wait for it 157 * to come online or time out. 158 */ 159 wait_for_completion_timeout(&cpu_running, 160 msecs_to_jiffies(1000)); 161 162 if (!cpu_online(cpu)) { 163 pr_crit("CPU%u: failed to come online\n", cpu); 164 ret = -EIO; 165 } 166 } else { 167 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 168 } 169 170 171 memset(&secondary_data, 0, sizeof(secondary_data)); 172 return ret; 173 } 174 175 /* platform specific SMP operations */ 176 void __init smp_init_cpus(void) 177 { 178 if (smp_ops.smp_init_cpus) 179 smp_ops.smp_init_cpus(); 180 } 181 182 int platform_can_secondary_boot(void) 183 { 184 return !!smp_ops.smp_boot_secondary; 185 } 186 187 int platform_can_cpu_hotplug(void) 188 { 189 #ifdef CONFIG_HOTPLUG_CPU 190 if (smp_ops.cpu_kill) 191 return 1; 192 #endif 193 194 return 0; 195 } 196 197 #ifdef CONFIG_HOTPLUG_CPU 198 static int platform_cpu_kill(unsigned int cpu) 199 { 200 if (smp_ops.cpu_kill) 201 return smp_ops.cpu_kill(cpu); 202 return 1; 203 } 204 205 static int platform_cpu_disable(unsigned int cpu) 206 { 207 if (smp_ops.cpu_disable) 208 return smp_ops.cpu_disable(cpu); 209 210 return 0; 211 } 212 213 int platform_can_hotplug_cpu(unsigned int cpu) 214 { 215 /* cpu_die must be specified to support hotplug */ 216 if (!smp_ops.cpu_die) 217 return 0; 218 219 if (smp_ops.cpu_can_disable) 220 return smp_ops.cpu_can_disable(cpu); 221 222 /* 223 * By default, allow disabling all CPUs except the first one, 224 * since this is special on a lot of platforms, e.g. because 225 * of clock tick interrupts. 226 */ 227 return cpu != 0; 228 } 229 230 /* 231 * __cpu_disable runs on the processor to be shutdown. 232 */ 233 int __cpu_disable(void) 234 { 235 unsigned int cpu = smp_processor_id(); 236 int ret; 237 238 ret = platform_cpu_disable(cpu); 239 if (ret) 240 return ret; 241 242 /* 243 * Take this CPU offline. Once we clear this, we can't return, 244 * and we must not schedule until we're ready to give up the cpu. 245 */ 246 set_cpu_online(cpu, false); 247 248 /* 249 * OK - migrate IRQs away from this CPU 250 */ 251 irq_migrate_all_off_this_cpu(); 252 253 /* 254 * Flush user cache and TLB mappings, and then remove this CPU 255 * from the vm mask set of all processes. 256 * 257 * Caches are flushed to the Level of Unification Inner Shareable 258 * to write-back dirty lines to unified caches shared by all CPUs. 259 */ 260 flush_cache_louis(); 261 local_flush_tlb_all(); 262 263 return 0; 264 } 265 266 static DECLARE_COMPLETION(cpu_died); 267 268 /* 269 * called on the thread which is asking for a CPU to be shutdown - 270 * waits until shutdown has completed, or it is timed out. 271 */ 272 void __cpu_die(unsigned int cpu) 273 { 274 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 275 pr_err("CPU%u: cpu didn't die\n", cpu); 276 return; 277 } 278 pr_debug("CPU%u: shutdown\n", cpu); 279 280 clear_tasks_mm_cpumask(cpu); 281 /* 282 * platform_cpu_kill() is generally expected to do the powering off 283 * and/or cutting of clocks to the dying CPU. Optionally, this may 284 * be done by the CPU which is dying in preference to supporting 285 * this call, but that means there is _no_ synchronisation between 286 * the requesting CPU and the dying CPU actually losing power. 287 */ 288 if (!platform_cpu_kill(cpu)) 289 pr_err("CPU%u: unable to kill\n", cpu); 290 } 291 292 /* 293 * Called from the idle thread for the CPU which has been shutdown. 294 * 295 * Note that we disable IRQs here, but do not re-enable them 296 * before returning to the caller. This is also the behaviour 297 * of the other hotplug-cpu capable cores, so presumably coming 298 * out of idle fixes this. 299 */ 300 void arch_cpu_idle_dead(void) 301 { 302 unsigned int cpu = smp_processor_id(); 303 304 idle_task_exit(); 305 306 local_irq_disable(); 307 308 /* 309 * Flush the data out of the L1 cache for this CPU. This must be 310 * before the completion to ensure that data is safely written out 311 * before platform_cpu_kill() gets called - which may disable 312 * *this* CPU and power down its cache. 313 */ 314 flush_cache_louis(); 315 316 /* 317 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 318 * this returns, power and/or clocks can be removed at any point 319 * from this CPU and its cache by platform_cpu_kill(). 320 */ 321 complete(&cpu_died); 322 323 /* 324 * Ensure that the cache lines associated with that completion are 325 * written out. This covers the case where _this_ CPU is doing the 326 * powering down, to ensure that the completion is visible to the 327 * CPU waiting for this one. 328 */ 329 flush_cache_louis(); 330 331 /* 332 * The actual CPU shutdown procedure is at least platform (if not 333 * CPU) specific. This may remove power, or it may simply spin. 334 * 335 * Platforms are generally expected *NOT* to return from this call, 336 * although there are some which do because they have no way to 337 * power down the CPU. These platforms are the _only_ reason we 338 * have a return path which uses the fragment of assembly below. 339 * 340 * The return path should not be used for platforms which can 341 * power off the CPU. 342 */ 343 if (smp_ops.cpu_die) 344 smp_ops.cpu_die(cpu); 345 346 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 347 cpu); 348 349 /* 350 * Do not return to the idle loop - jump back to the secondary 351 * cpu initialisation. There's some initialisation which needs 352 * to be repeated to undo the effects of taking the CPU offline. 353 */ 354 __asm__("mov sp, %0\n" 355 " mov fp, #0\n" 356 " b secondary_start_kernel" 357 : 358 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 359 } 360 #endif /* CONFIG_HOTPLUG_CPU */ 361 362 /* 363 * Called by both boot and secondaries to move global data into 364 * per-processor storage. 365 */ 366 static void smp_store_cpu_info(unsigned int cpuid) 367 { 368 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 369 370 cpu_info->loops_per_jiffy = loops_per_jiffy; 371 cpu_info->cpuid = read_cpuid_id(); 372 373 store_cpu_topology(cpuid); 374 } 375 376 /* 377 * This is the secondary CPU boot entry. We're using this CPUs 378 * idle thread stack, but a set of temporary page tables. 379 */ 380 asmlinkage void secondary_start_kernel(void) 381 { 382 struct mm_struct *mm = &init_mm; 383 unsigned int cpu; 384 385 secondary_biglittle_init(); 386 387 /* 388 * The identity mapping is uncached (strongly ordered), so 389 * switch away from it before attempting any exclusive accesses. 390 */ 391 cpu_switch_mm(mm->pgd, mm); 392 local_flush_bp_all(); 393 enter_lazy_tlb(mm, current); 394 local_flush_tlb_all(); 395 396 /* 397 * All kernel threads share the same mm context; grab a 398 * reference and switch to it. 399 */ 400 cpu = smp_processor_id(); 401 mmgrab(mm); 402 current->active_mm = mm; 403 cpumask_set_cpu(cpu, mm_cpumask(mm)); 404 405 cpu_init(); 406 407 #ifndef CONFIG_MMU 408 setup_vectors_base(); 409 #endif 410 pr_debug("CPU%u: Booted secondary processor\n", cpu); 411 412 preempt_disable(); 413 trace_hardirqs_off(); 414 415 /* 416 * Give the platform a chance to do its own initialisation. 417 */ 418 if (smp_ops.smp_secondary_init) 419 smp_ops.smp_secondary_init(cpu); 420 421 notify_cpu_starting(cpu); 422 423 calibrate_delay(); 424 425 smp_store_cpu_info(cpu); 426 427 /* 428 * OK, now it's safe to let the boot CPU continue. Wait for 429 * the CPU migration code to notice that the CPU is online 430 * before we continue - which happens after __cpu_up returns. 431 */ 432 set_cpu_online(cpu, true); 433 434 check_other_bugs(); 435 436 complete(&cpu_running); 437 438 local_irq_enable(); 439 local_fiq_enable(); 440 local_abt_enable(); 441 442 /* 443 * OK, it's off to the idle thread for us 444 */ 445 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 446 } 447 448 void __init smp_cpus_done(unsigned int max_cpus) 449 { 450 int cpu; 451 unsigned long bogosum = 0; 452 453 for_each_online_cpu(cpu) 454 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 455 456 printk(KERN_INFO "SMP: Total of %d processors activated " 457 "(%lu.%02lu BogoMIPS).\n", 458 num_online_cpus(), 459 bogosum / (500000/HZ), 460 (bogosum / (5000/HZ)) % 100); 461 462 hyp_mode_check(); 463 } 464 465 void __init smp_prepare_boot_cpu(void) 466 { 467 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 468 } 469 470 void __init smp_prepare_cpus(unsigned int max_cpus) 471 { 472 unsigned int ncores = num_possible_cpus(); 473 474 init_cpu_topology(); 475 476 smp_store_cpu_info(smp_processor_id()); 477 478 /* 479 * are we trying to boot more cores than exist? 480 */ 481 if (max_cpus > ncores) 482 max_cpus = ncores; 483 if (ncores > 1 && max_cpus) { 484 /* 485 * Initialise the present map, which describes the set of CPUs 486 * actually populated at the present time. A platform should 487 * re-initialize the map in the platforms smp_prepare_cpus() 488 * if present != possible (e.g. physical hotplug). 489 */ 490 init_cpu_present(cpu_possible_mask); 491 492 /* 493 * Initialise the SCU if there are more than one CPU 494 * and let them know where to start. 495 */ 496 if (smp_ops.smp_prepare_cpus) 497 smp_ops.smp_prepare_cpus(max_cpus); 498 } 499 } 500 501 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 502 503 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 504 { 505 if (!__smp_cross_call) 506 __smp_cross_call = fn; 507 } 508 509 static const char *ipi_types[NR_IPI] __tracepoint_string = { 510 #define S(x,s) [x] = s 511 S(IPI_WAKEUP, "CPU wakeup interrupts"), 512 S(IPI_TIMER, "Timer broadcast interrupts"), 513 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 514 S(IPI_CALL_FUNC, "Function call interrupts"), 515 S(IPI_CPU_STOP, "CPU stop interrupts"), 516 S(IPI_IRQ_WORK, "IRQ work interrupts"), 517 S(IPI_COMPLETION, "completion interrupts"), 518 }; 519 520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 521 { 522 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 523 __smp_cross_call(target, ipinr); 524 } 525 526 void show_ipi_list(struct seq_file *p, int prec) 527 { 528 unsigned int cpu, i; 529 530 for (i = 0; i < NR_IPI; i++) { 531 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 532 533 for_each_online_cpu(cpu) 534 seq_printf(p, "%10u ", 535 __get_irq_stat(cpu, ipi_irqs[i])); 536 537 seq_printf(p, " %s\n", ipi_types[i]); 538 } 539 } 540 541 u64 smp_irq_stat_cpu(unsigned int cpu) 542 { 543 u64 sum = 0; 544 int i; 545 546 for (i = 0; i < NR_IPI; i++) 547 sum += __get_irq_stat(cpu, ipi_irqs[i]); 548 549 return sum; 550 } 551 552 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 553 { 554 smp_cross_call(mask, IPI_CALL_FUNC); 555 } 556 557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 558 { 559 smp_cross_call(mask, IPI_WAKEUP); 560 } 561 562 void arch_send_call_function_single_ipi(int cpu) 563 { 564 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 565 } 566 567 #ifdef CONFIG_IRQ_WORK 568 void arch_irq_work_raise(void) 569 { 570 if (arch_irq_work_has_interrupt()) 571 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 572 } 573 #endif 574 575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 576 void tick_broadcast(const struct cpumask *mask) 577 { 578 smp_cross_call(mask, IPI_TIMER); 579 } 580 #endif 581 582 static DEFINE_RAW_SPINLOCK(stop_lock); 583 584 /* 585 * ipi_cpu_stop - handle IPI from smp_send_stop() 586 */ 587 static void ipi_cpu_stop(unsigned int cpu) 588 { 589 if (system_state <= SYSTEM_RUNNING) { 590 raw_spin_lock(&stop_lock); 591 pr_crit("CPU%u: stopping\n", cpu); 592 dump_stack(); 593 raw_spin_unlock(&stop_lock); 594 } 595 596 set_cpu_online(cpu, false); 597 598 local_fiq_disable(); 599 local_irq_disable(); 600 601 while (1) { 602 cpu_relax(); 603 wfe(); 604 } 605 } 606 607 static DEFINE_PER_CPU(struct completion *, cpu_completion); 608 609 int register_ipi_completion(struct completion *completion, int cpu) 610 { 611 per_cpu(cpu_completion, cpu) = completion; 612 return IPI_COMPLETION; 613 } 614 615 static void ipi_complete(unsigned int cpu) 616 { 617 complete(per_cpu(cpu_completion, cpu)); 618 } 619 620 /* 621 * Main handler for inter-processor interrupts 622 */ 623 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 624 { 625 handle_IPI(ipinr, regs); 626 } 627 628 void handle_IPI(int ipinr, struct pt_regs *regs) 629 { 630 unsigned int cpu = smp_processor_id(); 631 struct pt_regs *old_regs = set_irq_regs(regs); 632 633 if ((unsigned)ipinr < NR_IPI) { 634 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 635 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 636 } 637 638 switch (ipinr) { 639 case IPI_WAKEUP: 640 break; 641 642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 643 case IPI_TIMER: 644 irq_enter(); 645 tick_receive_broadcast(); 646 irq_exit(); 647 break; 648 #endif 649 650 case IPI_RESCHEDULE: 651 scheduler_ipi(); 652 break; 653 654 case IPI_CALL_FUNC: 655 irq_enter(); 656 generic_smp_call_function_interrupt(); 657 irq_exit(); 658 break; 659 660 case IPI_CPU_STOP: 661 irq_enter(); 662 ipi_cpu_stop(cpu); 663 irq_exit(); 664 break; 665 666 #ifdef CONFIG_IRQ_WORK 667 case IPI_IRQ_WORK: 668 irq_enter(); 669 irq_work_run(); 670 irq_exit(); 671 break; 672 #endif 673 674 case IPI_COMPLETION: 675 irq_enter(); 676 ipi_complete(cpu); 677 irq_exit(); 678 break; 679 680 case IPI_CPU_BACKTRACE: 681 printk_nmi_enter(); 682 irq_enter(); 683 nmi_cpu_backtrace(regs); 684 irq_exit(); 685 printk_nmi_exit(); 686 break; 687 688 default: 689 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 690 cpu, ipinr); 691 break; 692 } 693 694 if ((unsigned)ipinr < NR_IPI) 695 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 696 set_irq_regs(old_regs); 697 } 698 699 void smp_send_reschedule(int cpu) 700 { 701 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 702 } 703 704 void smp_send_stop(void) 705 { 706 unsigned long timeout; 707 struct cpumask mask; 708 709 cpumask_copy(&mask, cpu_online_mask); 710 cpumask_clear_cpu(smp_processor_id(), &mask); 711 if (!cpumask_empty(&mask)) 712 smp_cross_call(&mask, IPI_CPU_STOP); 713 714 /* Wait up to one second for other CPUs to stop */ 715 timeout = USEC_PER_SEC; 716 while (num_online_cpus() > 1 && timeout--) 717 udelay(1); 718 719 if (num_online_cpus() > 1) 720 pr_warn("SMP: failed to stop secondary CPUs\n"); 721 } 722 723 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 724 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 725 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 726 * kdump fails. So split out the panic_smp_self_stop() and add 727 * set_cpu_online(smp_processor_id(), false). 728 */ 729 void panic_smp_self_stop(void) 730 { 731 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 732 smp_processor_id()); 733 set_cpu_online(smp_processor_id(), false); 734 while (1) 735 cpu_relax(); 736 } 737 738 /* 739 * not supported here 740 */ 741 int setup_profiling_timer(unsigned int multiplier) 742 { 743 return -EINVAL; 744 } 745 746 #ifdef CONFIG_CPU_FREQ 747 748 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 750 static unsigned long global_l_p_j_ref; 751 static unsigned long global_l_p_j_ref_freq; 752 753 static int cpufreq_callback(struct notifier_block *nb, 754 unsigned long val, void *data) 755 { 756 struct cpufreq_freqs *freq = data; 757 int cpu = freq->cpu; 758 759 if (freq->flags & CPUFREQ_CONST_LOOPS) 760 return NOTIFY_OK; 761 762 if (!per_cpu(l_p_j_ref, cpu)) { 763 per_cpu(l_p_j_ref, cpu) = 764 per_cpu(cpu_data, cpu).loops_per_jiffy; 765 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 766 if (!global_l_p_j_ref) { 767 global_l_p_j_ref = loops_per_jiffy; 768 global_l_p_j_ref_freq = freq->old; 769 } 770 } 771 772 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 773 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 774 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 775 global_l_p_j_ref_freq, 776 freq->new); 777 per_cpu(cpu_data, cpu).loops_per_jiffy = 778 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 779 per_cpu(l_p_j_ref_freq, cpu), 780 freq->new); 781 } 782 return NOTIFY_OK; 783 } 784 785 static struct notifier_block cpufreq_notifier = { 786 .notifier_call = cpufreq_callback, 787 }; 788 789 static int __init register_cpufreq_notifier(void) 790 { 791 return cpufreq_register_notifier(&cpufreq_notifier, 792 CPUFREQ_TRANSITION_NOTIFIER); 793 } 794 core_initcall(register_cpufreq_notifier); 795 796 #endif 797 798 static void raise_nmi(cpumask_t *mask) 799 { 800 smp_cross_call(mask, IPI_CPU_BACKTRACE); 801 } 802 803 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 804 { 805 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 806 } 807