xref: /openbmc/linux/arch/arm/kernel/smp.c (revision a1e58bbd)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 
26 #include <asm/atomic.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cpu.h>
29 #include <asm/mmu_context.h>
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/processor.h>
33 #include <asm/tlbflush.h>
34 #include <asm/ptrace.h>
35 
36 /*
37  * bitmask of present and online CPUs.
38  * The present bitmask indicates that the CPU is physically present.
39  * The online bitmask indicates that the CPU is up and running.
40  */
41 cpumask_t cpu_possible_map;
42 EXPORT_SYMBOL(cpu_possible_map);
43 cpumask_t cpu_online_map;
44 EXPORT_SYMBOL(cpu_online_map);
45 
46 /*
47  * as from 2.5, kernels no longer have an init_tasks structure
48  * so we need some other way of telling a new secondary core
49  * where to place its SVC stack
50  */
51 struct secondary_data secondary_data;
52 
53 /*
54  * structures for inter-processor calls
55  * - A collection of single bit ipi messages.
56  */
57 struct ipi_data {
58 	spinlock_t lock;
59 	unsigned long ipi_count;
60 	unsigned long bits;
61 };
62 
63 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
64 	.lock	= SPIN_LOCK_UNLOCKED,
65 };
66 
67 enum ipi_msg_type {
68 	IPI_TIMER,
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CPU_STOP,
72 };
73 
74 struct smp_call_struct {
75 	void (*func)(void *info);
76 	void *info;
77 	int wait;
78 	cpumask_t pending;
79 	cpumask_t unfinished;
80 };
81 
82 static struct smp_call_struct * volatile smp_call_function_data;
83 static DEFINE_SPINLOCK(smp_call_function_lock);
84 
85 int __cpuinit __cpu_up(unsigned int cpu)
86 {
87 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
88 	struct task_struct *idle = ci->idle;
89 	pgd_t *pgd;
90 	pmd_t *pmd;
91 	int ret;
92 
93 	/*
94 	 * Spawn a new process manually, if not already done.
95 	 * Grab a pointer to its task struct so we can mess with it
96 	 */
97 	if (!idle) {
98 		idle = fork_idle(cpu);
99 		if (IS_ERR(idle)) {
100 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
101 			return PTR_ERR(idle);
102 		}
103 		ci->idle = idle;
104 	}
105 
106 	/*
107 	 * Allocate initial page tables to allow the new CPU to
108 	 * enable the MMU safely.  This essentially means a set
109 	 * of our "standard" page tables, with the addition of
110 	 * a 1:1 mapping for the physical address of the kernel.
111 	 */
112 	pgd = pgd_alloc(&init_mm);
113 	pmd = pmd_offset(pgd, PHYS_OFFSET);
114 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
115 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
116 
117 	/*
118 	 * We need to tell the secondary core where to find
119 	 * its stack and the page tables.
120 	 */
121 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
122 	secondary_data.pgdir = virt_to_phys(pgd);
123 	wmb();
124 
125 	/*
126 	 * Now bring the CPU into our world.
127 	 */
128 	ret = boot_secondary(cpu, idle);
129 	if (ret == 0) {
130 		unsigned long timeout;
131 
132 		/*
133 		 * CPU was successfully started, wait for it
134 		 * to come online or time out.
135 		 */
136 		timeout = jiffies + HZ;
137 		while (time_before(jiffies, timeout)) {
138 			if (cpu_online(cpu))
139 				break;
140 
141 			udelay(10);
142 			barrier();
143 		}
144 
145 		if (!cpu_online(cpu))
146 			ret = -EIO;
147 	}
148 
149 	secondary_data.stack = NULL;
150 	secondary_data.pgdir = 0;
151 
152 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
153 	pgd_free(&init_mm, pgd);
154 
155 	if (ret) {
156 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
157 
158 		/*
159 		 * FIXME: We need to clean up the new idle thread. --rmk
160 		 */
161 	}
162 
163 	return ret;
164 }
165 
166 #ifdef CONFIG_HOTPLUG_CPU
167 /*
168  * __cpu_disable runs on the processor to be shutdown.
169  */
170 int __cpuexit __cpu_disable(void)
171 {
172 	unsigned int cpu = smp_processor_id();
173 	struct task_struct *p;
174 	int ret;
175 
176 	ret = mach_cpu_disable(cpu);
177 	if (ret)
178 		return ret;
179 
180 	/*
181 	 * Take this CPU offline.  Once we clear this, we can't return,
182 	 * and we must not schedule until we're ready to give up the cpu.
183 	 */
184 	cpu_clear(cpu, cpu_online_map);
185 
186 	/*
187 	 * OK - migrate IRQs away from this CPU
188 	 */
189 	migrate_irqs();
190 
191 	/*
192 	 * Stop the local timer for this CPU.
193 	 */
194 	local_timer_stop(cpu);
195 
196 	/*
197 	 * Flush user cache and TLB mappings, and then remove this CPU
198 	 * from the vm mask set of all processes.
199 	 */
200 	flush_cache_all();
201 	local_flush_tlb_all();
202 
203 	read_lock(&tasklist_lock);
204 	for_each_process(p) {
205 		if (p->mm)
206 			cpu_clear(cpu, p->mm->cpu_vm_mask);
207 	}
208 	read_unlock(&tasklist_lock);
209 
210 	return 0;
211 }
212 
213 /*
214  * called on the thread which is asking for a CPU to be shutdown -
215  * waits until shutdown has completed, or it is timed out.
216  */
217 void __cpuexit __cpu_die(unsigned int cpu)
218 {
219 	if (!platform_cpu_kill(cpu))
220 		printk("CPU%u: unable to kill\n", cpu);
221 }
222 
223 /*
224  * Called from the idle thread for the CPU which has been shutdown.
225  *
226  * Note that we disable IRQs here, but do not re-enable them
227  * before returning to the caller. This is also the behaviour
228  * of the other hotplug-cpu capable cores, so presumably coming
229  * out of idle fixes this.
230  */
231 void __cpuexit cpu_die(void)
232 {
233 	unsigned int cpu = smp_processor_id();
234 
235 	local_irq_disable();
236 	idle_task_exit();
237 
238 	/*
239 	 * actual CPU shutdown procedure is at least platform (if not
240 	 * CPU) specific
241 	 */
242 	platform_cpu_die(cpu);
243 
244 	/*
245 	 * Do not return to the idle loop - jump back to the secondary
246 	 * cpu initialisation.  There's some initialisation which needs
247 	 * to be repeated to undo the effects of taking the CPU offline.
248 	 */
249 	__asm__("mov	sp, %0\n"
250 	"	b	secondary_start_kernel"
251 		:
252 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
253 }
254 #endif /* CONFIG_HOTPLUG_CPU */
255 
256 /*
257  * This is the secondary CPU boot entry.  We're using this CPUs
258  * idle thread stack, but a set of temporary page tables.
259  */
260 asmlinkage void __cpuinit secondary_start_kernel(void)
261 {
262 	struct mm_struct *mm = &init_mm;
263 	unsigned int cpu = smp_processor_id();
264 
265 	printk("CPU%u: Booted secondary processor\n", cpu);
266 
267 	/*
268 	 * All kernel threads share the same mm context; grab a
269 	 * reference and switch to it.
270 	 */
271 	atomic_inc(&mm->mm_users);
272 	atomic_inc(&mm->mm_count);
273 	current->active_mm = mm;
274 	cpu_set(cpu, mm->cpu_vm_mask);
275 	cpu_switch_mm(mm->pgd, mm);
276 	enter_lazy_tlb(mm, current);
277 	local_flush_tlb_all();
278 
279 	cpu_init();
280 	preempt_disable();
281 
282 	/*
283 	 * Give the platform a chance to do its own initialisation.
284 	 */
285 	platform_secondary_init(cpu);
286 
287 	/*
288 	 * Enable local interrupts.
289 	 */
290 	local_irq_enable();
291 	local_fiq_enable();
292 
293 	/*
294 	 * Setup local timer for this CPU.
295 	 */
296 	local_timer_setup(cpu);
297 
298 	calibrate_delay();
299 
300 	smp_store_cpu_info(cpu);
301 
302 	/*
303 	 * OK, now it's safe to let the boot CPU continue
304 	 */
305 	cpu_set(cpu, cpu_online_map);
306 
307 	/*
308 	 * OK, it's off to the idle thread for us
309 	 */
310 	cpu_idle();
311 }
312 
313 /*
314  * Called by both boot and secondaries to move global data into
315  * per-processor storage.
316  */
317 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
318 {
319 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
320 
321 	cpu_info->loops_per_jiffy = loops_per_jiffy;
322 }
323 
324 void __init smp_cpus_done(unsigned int max_cpus)
325 {
326 	int cpu;
327 	unsigned long bogosum = 0;
328 
329 	for_each_online_cpu(cpu)
330 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
331 
332 	printk(KERN_INFO "SMP: Total of %d processors activated "
333 	       "(%lu.%02lu BogoMIPS).\n",
334 	       num_online_cpus(),
335 	       bogosum / (500000/HZ),
336 	       (bogosum / (5000/HZ)) % 100);
337 }
338 
339 void __init smp_prepare_boot_cpu(void)
340 {
341 	unsigned int cpu = smp_processor_id();
342 
343 	per_cpu(cpu_data, cpu).idle = current;
344 }
345 
346 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
347 {
348 	unsigned long flags;
349 	unsigned int cpu;
350 
351 	local_irq_save(flags);
352 
353 	for_each_cpu_mask(cpu, callmap) {
354 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
355 
356 		spin_lock(&ipi->lock);
357 		ipi->bits |= 1 << msg;
358 		spin_unlock(&ipi->lock);
359 	}
360 
361 	/*
362 	 * Call the platform specific cross-CPU call function.
363 	 */
364 	smp_cross_call(callmap);
365 
366 	local_irq_restore(flags);
367 }
368 
369 /*
370  * You must not call this function with disabled interrupts, from a
371  * hardware interrupt handler, nor from a bottom half handler.
372  */
373 static int smp_call_function_on_cpu(void (*func)(void *info), void *info,
374 				    int retry, int wait, cpumask_t callmap)
375 {
376 	struct smp_call_struct data;
377 	unsigned long timeout;
378 	int ret = 0;
379 
380 	data.func = func;
381 	data.info = info;
382 	data.wait = wait;
383 
384 	cpu_clear(smp_processor_id(), callmap);
385 	if (cpus_empty(callmap))
386 		goto out;
387 
388 	data.pending = callmap;
389 	if (wait)
390 		data.unfinished = callmap;
391 
392 	/*
393 	 * try to get the mutex on smp_call_function_data
394 	 */
395 	spin_lock(&smp_call_function_lock);
396 	smp_call_function_data = &data;
397 
398 	send_ipi_message(callmap, IPI_CALL_FUNC);
399 
400 	timeout = jiffies + HZ;
401 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
402 		barrier();
403 
404 	/*
405 	 * did we time out?
406 	 */
407 	if (!cpus_empty(data.pending)) {
408 		/*
409 		 * this may be causing our panic - report it
410 		 */
411 		printk(KERN_CRIT
412 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
413 		       "      callmap %lx pending %lx, %swait\n",
414 		       smp_processor_id(), func, info, *cpus_addr(callmap),
415 		       *cpus_addr(data.pending), wait ? "" : "no ");
416 
417 		/*
418 		 * TRACE
419 		 */
420 		timeout = jiffies + (5 * HZ);
421 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
422 			barrier();
423 
424 		if (cpus_empty(data.pending))
425 			printk(KERN_CRIT "     RESOLVED\n");
426 		else
427 			printk(KERN_CRIT "     STILL STUCK\n");
428 	}
429 
430 	/*
431 	 * whatever happened, we're done with the data, so release it
432 	 */
433 	smp_call_function_data = NULL;
434 	spin_unlock(&smp_call_function_lock);
435 
436 	if (!cpus_empty(data.pending)) {
437 		ret = -ETIMEDOUT;
438 		goto out;
439 	}
440 
441 	if (wait)
442 		while (!cpus_empty(data.unfinished))
443 			barrier();
444  out:
445 
446 	return 0;
447 }
448 
449 int smp_call_function(void (*func)(void *info), void *info, int retry,
450                       int wait)
451 {
452 	return smp_call_function_on_cpu(func, info, retry, wait,
453 					cpu_online_map);
454 }
455 EXPORT_SYMBOL_GPL(smp_call_function);
456 
457 int smp_call_function_single(int cpu, void (*func)(void *info), void *info,
458 			     int retry, int wait)
459 {
460 	/* prevent preemption and reschedule on another processor */
461 	int current_cpu = get_cpu();
462 	int ret = 0;
463 
464 	if (cpu == current_cpu) {
465 		local_irq_disable();
466 		func(info);
467 		local_irq_enable();
468 	} else
469 		ret = smp_call_function_on_cpu(func, info, retry, wait,
470 					       cpumask_of_cpu(cpu));
471 
472 	put_cpu();
473 
474 	return ret;
475 }
476 EXPORT_SYMBOL_GPL(smp_call_function_single);
477 
478 void show_ipi_list(struct seq_file *p)
479 {
480 	unsigned int cpu;
481 
482 	seq_puts(p, "IPI:");
483 
484 	for_each_present_cpu(cpu)
485 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
486 
487 	seq_putc(p, '\n');
488 }
489 
490 void show_local_irqs(struct seq_file *p)
491 {
492 	unsigned int cpu;
493 
494 	seq_printf(p, "LOC: ");
495 
496 	for_each_present_cpu(cpu)
497 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
498 
499 	seq_putc(p, '\n');
500 }
501 
502 static void ipi_timer(void)
503 {
504 	irq_enter();
505 	local_timer_interrupt();
506 	irq_exit();
507 }
508 
509 #ifdef CONFIG_LOCAL_TIMERS
510 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
511 {
512 	struct pt_regs *old_regs = set_irq_regs(regs);
513 	int cpu = smp_processor_id();
514 
515 	if (local_timer_ack()) {
516 		irq_stat[cpu].local_timer_irqs++;
517 		ipi_timer();
518 	}
519 
520 	set_irq_regs(old_regs);
521 }
522 #endif
523 
524 /*
525  * ipi_call_function - handle IPI from smp_call_function()
526  *
527  * Note that we copy data out of the cross-call structure and then
528  * let the caller know that we're here and have done with their data
529  */
530 static void ipi_call_function(unsigned int cpu)
531 {
532 	struct smp_call_struct *data = smp_call_function_data;
533 	void (*func)(void *info) = data->func;
534 	void *info = data->info;
535 	int wait = data->wait;
536 
537 	cpu_clear(cpu, data->pending);
538 
539 	func(info);
540 
541 	if (wait)
542 		cpu_clear(cpu, data->unfinished);
543 }
544 
545 static DEFINE_SPINLOCK(stop_lock);
546 
547 /*
548  * ipi_cpu_stop - handle IPI from smp_send_stop()
549  */
550 static void ipi_cpu_stop(unsigned int cpu)
551 {
552 	spin_lock(&stop_lock);
553 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
554 	dump_stack();
555 	spin_unlock(&stop_lock);
556 
557 	cpu_clear(cpu, cpu_online_map);
558 
559 	local_fiq_disable();
560 	local_irq_disable();
561 
562 	while (1)
563 		cpu_relax();
564 }
565 
566 /*
567  * Main handler for inter-processor interrupts
568  *
569  * For ARM, the ipimask now only identifies a single
570  * category of IPI (Bit 1 IPIs have been replaced by a
571  * different mechanism):
572  *
573  *  Bit 0 - Inter-processor function call
574  */
575 asmlinkage void __exception do_IPI(struct pt_regs *regs)
576 {
577 	unsigned int cpu = smp_processor_id();
578 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
579 	struct pt_regs *old_regs = set_irq_regs(regs);
580 
581 	ipi->ipi_count++;
582 
583 	for (;;) {
584 		unsigned long msgs;
585 
586 		spin_lock(&ipi->lock);
587 		msgs = ipi->bits;
588 		ipi->bits = 0;
589 		spin_unlock(&ipi->lock);
590 
591 		if (!msgs)
592 			break;
593 
594 		do {
595 			unsigned nextmsg;
596 
597 			nextmsg = msgs & -msgs;
598 			msgs &= ~nextmsg;
599 			nextmsg = ffz(~nextmsg);
600 
601 			switch (nextmsg) {
602 			case IPI_TIMER:
603 				ipi_timer();
604 				break;
605 
606 			case IPI_RESCHEDULE:
607 				/*
608 				 * nothing more to do - eveything is
609 				 * done on the interrupt return path
610 				 */
611 				break;
612 
613 			case IPI_CALL_FUNC:
614 				ipi_call_function(cpu);
615 				break;
616 
617 			case IPI_CPU_STOP:
618 				ipi_cpu_stop(cpu);
619 				break;
620 
621 			default:
622 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
623 				       cpu, nextmsg);
624 				break;
625 			}
626 		} while (msgs);
627 	}
628 
629 	set_irq_regs(old_regs);
630 }
631 
632 void smp_send_reschedule(int cpu)
633 {
634 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
635 }
636 
637 void smp_send_timer(void)
638 {
639 	cpumask_t mask = cpu_online_map;
640 	cpu_clear(smp_processor_id(), mask);
641 	send_ipi_message(mask, IPI_TIMER);
642 }
643 
644 void smp_timer_broadcast(cpumask_t mask)
645 {
646 	send_ipi_message(mask, IPI_TIMER);
647 }
648 
649 void smp_send_stop(void)
650 {
651 	cpumask_t mask = cpu_online_map;
652 	cpu_clear(smp_processor_id(), mask);
653 	send_ipi_message(mask, IPI_CPU_STOP);
654 }
655 
656 /*
657  * not supported here
658  */
659 int setup_profiling_timer(unsigned int multiplier)
660 {
661 	return -EINVAL;
662 }
663 
664 static int
665 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
666 		 cpumask_t mask)
667 {
668 	int ret = 0;
669 
670 	preempt_disable();
671 
672 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
673 	if (cpu_isset(smp_processor_id(), mask))
674 		func(info);
675 
676 	preempt_enable();
677 
678 	return ret;
679 }
680 
681 /**********************************************************************/
682 
683 /*
684  * TLB operations
685  */
686 struct tlb_args {
687 	struct vm_area_struct *ta_vma;
688 	unsigned long ta_start;
689 	unsigned long ta_end;
690 };
691 
692 static inline void ipi_flush_tlb_all(void *ignored)
693 {
694 	local_flush_tlb_all();
695 }
696 
697 static inline void ipi_flush_tlb_mm(void *arg)
698 {
699 	struct mm_struct *mm = (struct mm_struct *)arg;
700 
701 	local_flush_tlb_mm(mm);
702 }
703 
704 static inline void ipi_flush_tlb_page(void *arg)
705 {
706 	struct tlb_args *ta = (struct tlb_args *)arg;
707 
708 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
709 }
710 
711 static inline void ipi_flush_tlb_kernel_page(void *arg)
712 {
713 	struct tlb_args *ta = (struct tlb_args *)arg;
714 
715 	local_flush_tlb_kernel_page(ta->ta_start);
716 }
717 
718 static inline void ipi_flush_tlb_range(void *arg)
719 {
720 	struct tlb_args *ta = (struct tlb_args *)arg;
721 
722 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
723 }
724 
725 static inline void ipi_flush_tlb_kernel_range(void *arg)
726 {
727 	struct tlb_args *ta = (struct tlb_args *)arg;
728 
729 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
730 }
731 
732 void flush_tlb_all(void)
733 {
734 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
735 }
736 
737 void flush_tlb_mm(struct mm_struct *mm)
738 {
739 	cpumask_t mask = mm->cpu_vm_mask;
740 
741 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
742 }
743 
744 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
745 {
746 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
747 	struct tlb_args ta;
748 
749 	ta.ta_vma = vma;
750 	ta.ta_start = uaddr;
751 
752 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
753 }
754 
755 void flush_tlb_kernel_page(unsigned long kaddr)
756 {
757 	struct tlb_args ta;
758 
759 	ta.ta_start = kaddr;
760 
761 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
762 }
763 
764 void flush_tlb_range(struct vm_area_struct *vma,
765                      unsigned long start, unsigned long end)
766 {
767 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
768 	struct tlb_args ta;
769 
770 	ta.ta_vma = vma;
771 	ta.ta_start = start;
772 	ta.ta_end = end;
773 
774 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
775 }
776 
777 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
778 {
779 	struct tlb_args ta;
780 
781 	ta.ta_start = start;
782 	ta.ta_end = end;
783 
784 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
785 }
786