1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/smp.h> 23 #include <linux/seq_file.h> 24 #include <linux/irq.h> 25 26 #include <asm/atomic.h> 27 #include <asm/cacheflush.h> 28 #include <asm/cpu.h> 29 #include <asm/mmu_context.h> 30 #include <asm/pgtable.h> 31 #include <asm/pgalloc.h> 32 #include <asm/processor.h> 33 #include <asm/tlbflush.h> 34 #include <asm/ptrace.h> 35 36 /* 37 * bitmask of present and online CPUs. 38 * The present bitmask indicates that the CPU is physically present. 39 * The online bitmask indicates that the CPU is up and running. 40 */ 41 cpumask_t cpu_possible_map; 42 EXPORT_SYMBOL(cpu_possible_map); 43 cpumask_t cpu_online_map; 44 EXPORT_SYMBOL(cpu_online_map); 45 46 /* 47 * as from 2.5, kernels no longer have an init_tasks structure 48 * so we need some other way of telling a new secondary core 49 * where to place its SVC stack 50 */ 51 struct secondary_data secondary_data; 52 53 /* 54 * structures for inter-processor calls 55 * - A collection of single bit ipi messages. 56 */ 57 struct ipi_data { 58 spinlock_t lock; 59 unsigned long ipi_count; 60 unsigned long bits; 61 }; 62 63 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 64 .lock = SPIN_LOCK_UNLOCKED, 65 }; 66 67 enum ipi_msg_type { 68 IPI_TIMER, 69 IPI_RESCHEDULE, 70 IPI_CALL_FUNC, 71 IPI_CPU_STOP, 72 }; 73 74 struct smp_call_struct { 75 void (*func)(void *info); 76 void *info; 77 int wait; 78 cpumask_t pending; 79 cpumask_t unfinished; 80 }; 81 82 static struct smp_call_struct * volatile smp_call_function_data; 83 static DEFINE_SPINLOCK(smp_call_function_lock); 84 85 int __cpuinit __cpu_up(unsigned int cpu) 86 { 87 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 88 struct task_struct *idle = ci->idle; 89 pgd_t *pgd; 90 pmd_t *pmd; 91 int ret; 92 93 /* 94 * Spawn a new process manually, if not already done. 95 * Grab a pointer to its task struct so we can mess with it 96 */ 97 if (!idle) { 98 idle = fork_idle(cpu); 99 if (IS_ERR(idle)) { 100 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 101 return PTR_ERR(idle); 102 } 103 ci->idle = idle; 104 } 105 106 /* 107 * Allocate initial page tables to allow the new CPU to 108 * enable the MMU safely. This essentially means a set 109 * of our "standard" page tables, with the addition of 110 * a 1:1 mapping for the physical address of the kernel. 111 */ 112 pgd = pgd_alloc(&init_mm); 113 pmd = pmd_offset(pgd, PHYS_OFFSET); 114 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 115 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 116 117 /* 118 * We need to tell the secondary core where to find 119 * its stack and the page tables. 120 */ 121 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 122 secondary_data.pgdir = virt_to_phys(pgd); 123 wmb(); 124 125 /* 126 * Now bring the CPU into our world. 127 */ 128 ret = boot_secondary(cpu, idle); 129 if (ret == 0) { 130 unsigned long timeout; 131 132 /* 133 * CPU was successfully started, wait for it 134 * to come online or time out. 135 */ 136 timeout = jiffies + HZ; 137 while (time_before(jiffies, timeout)) { 138 if (cpu_online(cpu)) 139 break; 140 141 udelay(10); 142 barrier(); 143 } 144 145 if (!cpu_online(cpu)) 146 ret = -EIO; 147 } 148 149 secondary_data.stack = NULL; 150 secondary_data.pgdir = 0; 151 152 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 153 pgd_free(&init_mm, pgd); 154 155 if (ret) { 156 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 157 158 /* 159 * FIXME: We need to clean up the new idle thread. --rmk 160 */ 161 } 162 163 return ret; 164 } 165 166 #ifdef CONFIG_HOTPLUG_CPU 167 /* 168 * __cpu_disable runs on the processor to be shutdown. 169 */ 170 int __cpuexit __cpu_disable(void) 171 { 172 unsigned int cpu = smp_processor_id(); 173 struct task_struct *p; 174 int ret; 175 176 ret = mach_cpu_disable(cpu); 177 if (ret) 178 return ret; 179 180 /* 181 * Take this CPU offline. Once we clear this, we can't return, 182 * and we must not schedule until we're ready to give up the cpu. 183 */ 184 cpu_clear(cpu, cpu_online_map); 185 186 /* 187 * OK - migrate IRQs away from this CPU 188 */ 189 migrate_irqs(); 190 191 /* 192 * Stop the local timer for this CPU. 193 */ 194 local_timer_stop(cpu); 195 196 /* 197 * Flush user cache and TLB mappings, and then remove this CPU 198 * from the vm mask set of all processes. 199 */ 200 flush_cache_all(); 201 local_flush_tlb_all(); 202 203 read_lock(&tasklist_lock); 204 for_each_process(p) { 205 if (p->mm) 206 cpu_clear(cpu, p->mm->cpu_vm_mask); 207 } 208 read_unlock(&tasklist_lock); 209 210 return 0; 211 } 212 213 /* 214 * called on the thread which is asking for a CPU to be shutdown - 215 * waits until shutdown has completed, or it is timed out. 216 */ 217 void __cpuexit __cpu_die(unsigned int cpu) 218 { 219 if (!platform_cpu_kill(cpu)) 220 printk("CPU%u: unable to kill\n", cpu); 221 } 222 223 /* 224 * Called from the idle thread for the CPU which has been shutdown. 225 * 226 * Note that we disable IRQs here, but do not re-enable them 227 * before returning to the caller. This is also the behaviour 228 * of the other hotplug-cpu capable cores, so presumably coming 229 * out of idle fixes this. 230 */ 231 void __cpuexit cpu_die(void) 232 { 233 unsigned int cpu = smp_processor_id(); 234 235 local_irq_disable(); 236 idle_task_exit(); 237 238 /* 239 * actual CPU shutdown procedure is at least platform (if not 240 * CPU) specific 241 */ 242 platform_cpu_die(cpu); 243 244 /* 245 * Do not return to the idle loop - jump back to the secondary 246 * cpu initialisation. There's some initialisation which needs 247 * to be repeated to undo the effects of taking the CPU offline. 248 */ 249 __asm__("mov sp, %0\n" 250 " b secondary_start_kernel" 251 : 252 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 253 } 254 #endif /* CONFIG_HOTPLUG_CPU */ 255 256 /* 257 * This is the secondary CPU boot entry. We're using this CPUs 258 * idle thread stack, but a set of temporary page tables. 259 */ 260 asmlinkage void __cpuinit secondary_start_kernel(void) 261 { 262 struct mm_struct *mm = &init_mm; 263 unsigned int cpu = smp_processor_id(); 264 265 printk("CPU%u: Booted secondary processor\n", cpu); 266 267 /* 268 * All kernel threads share the same mm context; grab a 269 * reference and switch to it. 270 */ 271 atomic_inc(&mm->mm_users); 272 atomic_inc(&mm->mm_count); 273 current->active_mm = mm; 274 cpu_set(cpu, mm->cpu_vm_mask); 275 cpu_switch_mm(mm->pgd, mm); 276 enter_lazy_tlb(mm, current); 277 local_flush_tlb_all(); 278 279 cpu_init(); 280 preempt_disable(); 281 282 /* 283 * Give the platform a chance to do its own initialisation. 284 */ 285 platform_secondary_init(cpu); 286 287 /* 288 * Enable local interrupts. 289 */ 290 local_irq_enable(); 291 local_fiq_enable(); 292 293 /* 294 * Setup local timer for this CPU. 295 */ 296 local_timer_setup(cpu); 297 298 calibrate_delay(); 299 300 smp_store_cpu_info(cpu); 301 302 /* 303 * OK, now it's safe to let the boot CPU continue 304 */ 305 cpu_set(cpu, cpu_online_map); 306 307 /* 308 * OK, it's off to the idle thread for us 309 */ 310 cpu_idle(); 311 } 312 313 /* 314 * Called by both boot and secondaries to move global data into 315 * per-processor storage. 316 */ 317 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 318 { 319 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 320 321 cpu_info->loops_per_jiffy = loops_per_jiffy; 322 } 323 324 void __init smp_cpus_done(unsigned int max_cpus) 325 { 326 int cpu; 327 unsigned long bogosum = 0; 328 329 for_each_online_cpu(cpu) 330 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 331 332 printk(KERN_INFO "SMP: Total of %d processors activated " 333 "(%lu.%02lu BogoMIPS).\n", 334 num_online_cpus(), 335 bogosum / (500000/HZ), 336 (bogosum / (5000/HZ)) % 100); 337 } 338 339 void __init smp_prepare_boot_cpu(void) 340 { 341 unsigned int cpu = smp_processor_id(); 342 343 per_cpu(cpu_data, cpu).idle = current; 344 } 345 346 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 347 { 348 unsigned long flags; 349 unsigned int cpu; 350 351 local_irq_save(flags); 352 353 for_each_cpu_mask(cpu, callmap) { 354 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 355 356 spin_lock(&ipi->lock); 357 ipi->bits |= 1 << msg; 358 spin_unlock(&ipi->lock); 359 } 360 361 /* 362 * Call the platform specific cross-CPU call function. 363 */ 364 smp_cross_call(callmap); 365 366 local_irq_restore(flags); 367 } 368 369 /* 370 * You must not call this function with disabled interrupts, from a 371 * hardware interrupt handler, nor from a bottom half handler. 372 */ 373 static int smp_call_function_on_cpu(void (*func)(void *info), void *info, 374 int retry, int wait, cpumask_t callmap) 375 { 376 struct smp_call_struct data; 377 unsigned long timeout; 378 int ret = 0; 379 380 data.func = func; 381 data.info = info; 382 data.wait = wait; 383 384 cpu_clear(smp_processor_id(), callmap); 385 if (cpus_empty(callmap)) 386 goto out; 387 388 data.pending = callmap; 389 if (wait) 390 data.unfinished = callmap; 391 392 /* 393 * try to get the mutex on smp_call_function_data 394 */ 395 spin_lock(&smp_call_function_lock); 396 smp_call_function_data = &data; 397 398 send_ipi_message(callmap, IPI_CALL_FUNC); 399 400 timeout = jiffies + HZ; 401 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 402 barrier(); 403 404 /* 405 * did we time out? 406 */ 407 if (!cpus_empty(data.pending)) { 408 /* 409 * this may be causing our panic - report it 410 */ 411 printk(KERN_CRIT 412 "CPU%u: smp_call_function timeout for %p(%p)\n" 413 " callmap %lx pending %lx, %swait\n", 414 smp_processor_id(), func, info, *cpus_addr(callmap), 415 *cpus_addr(data.pending), wait ? "" : "no "); 416 417 /* 418 * TRACE 419 */ 420 timeout = jiffies + (5 * HZ); 421 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 422 barrier(); 423 424 if (cpus_empty(data.pending)) 425 printk(KERN_CRIT " RESOLVED\n"); 426 else 427 printk(KERN_CRIT " STILL STUCK\n"); 428 } 429 430 /* 431 * whatever happened, we're done with the data, so release it 432 */ 433 smp_call_function_data = NULL; 434 spin_unlock(&smp_call_function_lock); 435 436 if (!cpus_empty(data.pending)) { 437 ret = -ETIMEDOUT; 438 goto out; 439 } 440 441 if (wait) 442 while (!cpus_empty(data.unfinished)) 443 barrier(); 444 out: 445 446 return 0; 447 } 448 449 int smp_call_function(void (*func)(void *info), void *info, int retry, 450 int wait) 451 { 452 return smp_call_function_on_cpu(func, info, retry, wait, 453 cpu_online_map); 454 } 455 EXPORT_SYMBOL_GPL(smp_call_function); 456 457 int smp_call_function_single(int cpu, void (*func)(void *info), void *info, 458 int retry, int wait) 459 { 460 /* prevent preemption and reschedule on another processor */ 461 int current_cpu = get_cpu(); 462 int ret = 0; 463 464 if (cpu == current_cpu) { 465 local_irq_disable(); 466 func(info); 467 local_irq_enable(); 468 } else 469 ret = smp_call_function_on_cpu(func, info, retry, wait, 470 cpumask_of_cpu(cpu)); 471 472 put_cpu(); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(smp_call_function_single); 477 478 void show_ipi_list(struct seq_file *p) 479 { 480 unsigned int cpu; 481 482 seq_puts(p, "IPI:"); 483 484 for_each_present_cpu(cpu) 485 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 486 487 seq_putc(p, '\n'); 488 } 489 490 void show_local_irqs(struct seq_file *p) 491 { 492 unsigned int cpu; 493 494 seq_printf(p, "LOC: "); 495 496 for_each_present_cpu(cpu) 497 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 498 499 seq_putc(p, '\n'); 500 } 501 502 static void ipi_timer(void) 503 { 504 irq_enter(); 505 local_timer_interrupt(); 506 irq_exit(); 507 } 508 509 #ifdef CONFIG_LOCAL_TIMERS 510 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 511 { 512 struct pt_regs *old_regs = set_irq_regs(regs); 513 int cpu = smp_processor_id(); 514 515 if (local_timer_ack()) { 516 irq_stat[cpu].local_timer_irqs++; 517 ipi_timer(); 518 } 519 520 set_irq_regs(old_regs); 521 } 522 #endif 523 524 /* 525 * ipi_call_function - handle IPI from smp_call_function() 526 * 527 * Note that we copy data out of the cross-call structure and then 528 * let the caller know that we're here and have done with their data 529 */ 530 static void ipi_call_function(unsigned int cpu) 531 { 532 struct smp_call_struct *data = smp_call_function_data; 533 void (*func)(void *info) = data->func; 534 void *info = data->info; 535 int wait = data->wait; 536 537 cpu_clear(cpu, data->pending); 538 539 func(info); 540 541 if (wait) 542 cpu_clear(cpu, data->unfinished); 543 } 544 545 static DEFINE_SPINLOCK(stop_lock); 546 547 /* 548 * ipi_cpu_stop - handle IPI from smp_send_stop() 549 */ 550 static void ipi_cpu_stop(unsigned int cpu) 551 { 552 spin_lock(&stop_lock); 553 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 554 dump_stack(); 555 spin_unlock(&stop_lock); 556 557 cpu_clear(cpu, cpu_online_map); 558 559 local_fiq_disable(); 560 local_irq_disable(); 561 562 while (1) 563 cpu_relax(); 564 } 565 566 /* 567 * Main handler for inter-processor interrupts 568 * 569 * For ARM, the ipimask now only identifies a single 570 * category of IPI (Bit 1 IPIs have been replaced by a 571 * different mechanism): 572 * 573 * Bit 0 - Inter-processor function call 574 */ 575 asmlinkage void __exception do_IPI(struct pt_regs *regs) 576 { 577 unsigned int cpu = smp_processor_id(); 578 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 579 struct pt_regs *old_regs = set_irq_regs(regs); 580 581 ipi->ipi_count++; 582 583 for (;;) { 584 unsigned long msgs; 585 586 spin_lock(&ipi->lock); 587 msgs = ipi->bits; 588 ipi->bits = 0; 589 spin_unlock(&ipi->lock); 590 591 if (!msgs) 592 break; 593 594 do { 595 unsigned nextmsg; 596 597 nextmsg = msgs & -msgs; 598 msgs &= ~nextmsg; 599 nextmsg = ffz(~nextmsg); 600 601 switch (nextmsg) { 602 case IPI_TIMER: 603 ipi_timer(); 604 break; 605 606 case IPI_RESCHEDULE: 607 /* 608 * nothing more to do - eveything is 609 * done on the interrupt return path 610 */ 611 break; 612 613 case IPI_CALL_FUNC: 614 ipi_call_function(cpu); 615 break; 616 617 case IPI_CPU_STOP: 618 ipi_cpu_stop(cpu); 619 break; 620 621 default: 622 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 623 cpu, nextmsg); 624 break; 625 } 626 } while (msgs); 627 } 628 629 set_irq_regs(old_regs); 630 } 631 632 void smp_send_reschedule(int cpu) 633 { 634 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 635 } 636 637 void smp_send_timer(void) 638 { 639 cpumask_t mask = cpu_online_map; 640 cpu_clear(smp_processor_id(), mask); 641 send_ipi_message(mask, IPI_TIMER); 642 } 643 644 void smp_timer_broadcast(cpumask_t mask) 645 { 646 send_ipi_message(mask, IPI_TIMER); 647 } 648 649 void smp_send_stop(void) 650 { 651 cpumask_t mask = cpu_online_map; 652 cpu_clear(smp_processor_id(), mask); 653 send_ipi_message(mask, IPI_CPU_STOP); 654 } 655 656 /* 657 * not supported here 658 */ 659 int setup_profiling_timer(unsigned int multiplier) 660 { 661 return -EINVAL; 662 } 663 664 static int 665 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait, 666 cpumask_t mask) 667 { 668 int ret = 0; 669 670 preempt_disable(); 671 672 ret = smp_call_function_on_cpu(func, info, retry, wait, mask); 673 if (cpu_isset(smp_processor_id(), mask)) 674 func(info); 675 676 preempt_enable(); 677 678 return ret; 679 } 680 681 /**********************************************************************/ 682 683 /* 684 * TLB operations 685 */ 686 struct tlb_args { 687 struct vm_area_struct *ta_vma; 688 unsigned long ta_start; 689 unsigned long ta_end; 690 }; 691 692 static inline void ipi_flush_tlb_all(void *ignored) 693 { 694 local_flush_tlb_all(); 695 } 696 697 static inline void ipi_flush_tlb_mm(void *arg) 698 { 699 struct mm_struct *mm = (struct mm_struct *)arg; 700 701 local_flush_tlb_mm(mm); 702 } 703 704 static inline void ipi_flush_tlb_page(void *arg) 705 { 706 struct tlb_args *ta = (struct tlb_args *)arg; 707 708 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 709 } 710 711 static inline void ipi_flush_tlb_kernel_page(void *arg) 712 { 713 struct tlb_args *ta = (struct tlb_args *)arg; 714 715 local_flush_tlb_kernel_page(ta->ta_start); 716 } 717 718 static inline void ipi_flush_tlb_range(void *arg) 719 { 720 struct tlb_args *ta = (struct tlb_args *)arg; 721 722 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 723 } 724 725 static inline void ipi_flush_tlb_kernel_range(void *arg) 726 { 727 struct tlb_args *ta = (struct tlb_args *)arg; 728 729 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 730 } 731 732 void flush_tlb_all(void) 733 { 734 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1); 735 } 736 737 void flush_tlb_mm(struct mm_struct *mm) 738 { 739 cpumask_t mask = mm->cpu_vm_mask; 740 741 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask); 742 } 743 744 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 745 { 746 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 747 struct tlb_args ta; 748 749 ta.ta_vma = vma; 750 ta.ta_start = uaddr; 751 752 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask); 753 } 754 755 void flush_tlb_kernel_page(unsigned long kaddr) 756 { 757 struct tlb_args ta; 758 759 ta.ta_start = kaddr; 760 761 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1); 762 } 763 764 void flush_tlb_range(struct vm_area_struct *vma, 765 unsigned long start, unsigned long end) 766 { 767 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 768 struct tlb_args ta; 769 770 ta.ta_vma = vma; 771 ta.ta_start = start; 772 ta.ta_end = end; 773 774 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask); 775 } 776 777 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 778 { 779 struct tlb_args ta; 780 781 ta.ta_start = start; 782 ta.ta_end = end; 783 784 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1); 785 } 786