1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/nmi.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 #include <linux/cpufreq.h> 29 #include <linux/irq_work.h> 30 31 #include <linux/atomic.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/processor.h> 43 #include <asm/sections.h> 44 #include <asm/tlbflush.h> 45 #include <asm/ptrace.h> 46 #include <asm/smp_plat.h> 47 #include <asm/virt.h> 48 #include <asm/mach/arch.h> 49 #include <asm/mpu.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/ipi.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 /* 62 * control for which core is the next to come out of the secondary 63 * boot "holding pen" 64 */ 65 volatile int pen_release = -1; 66 67 enum ipi_msg_type { 68 IPI_WAKEUP, 69 IPI_TIMER, 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CALL_FUNC_SINGLE, 73 IPI_CPU_STOP, 74 IPI_IRQ_WORK, 75 IPI_COMPLETION, 76 IPI_CPU_BACKTRACE = 15, 77 }; 78 79 static DECLARE_COMPLETION(cpu_running); 80 81 static struct smp_operations smp_ops; 82 83 void __init smp_set_ops(const struct smp_operations *ops) 84 { 85 if (ops) 86 smp_ops = *ops; 87 }; 88 89 static unsigned long get_arch_pgd(pgd_t *pgd) 90 { 91 #ifdef CONFIG_ARM_LPAE 92 return __phys_to_pfn(virt_to_phys(pgd)); 93 #else 94 return virt_to_phys(pgd); 95 #endif 96 } 97 98 int __cpu_up(unsigned int cpu, struct task_struct *idle) 99 { 100 int ret; 101 102 if (!smp_ops.smp_boot_secondary) 103 return -ENOSYS; 104 105 /* 106 * We need to tell the secondary core where to find 107 * its stack and the page tables. 108 */ 109 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 110 #ifdef CONFIG_ARM_MPU 111 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 112 #endif 113 114 #ifdef CONFIG_MMU 115 secondary_data.pgdir = virt_to_phys(idmap_pgd); 116 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 117 #endif 118 sync_cache_w(&secondary_data); 119 120 /* 121 * Now bring the CPU into our world. 122 */ 123 ret = smp_ops.smp_boot_secondary(cpu, idle); 124 if (ret == 0) { 125 /* 126 * CPU was successfully started, wait for it 127 * to come online or time out. 128 */ 129 wait_for_completion_timeout(&cpu_running, 130 msecs_to_jiffies(1000)); 131 132 if (!cpu_online(cpu)) { 133 pr_crit("CPU%u: failed to come online\n", cpu); 134 ret = -EIO; 135 } 136 } else { 137 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 138 } 139 140 141 memset(&secondary_data, 0, sizeof(secondary_data)); 142 return ret; 143 } 144 145 /* platform specific SMP operations */ 146 void __init smp_init_cpus(void) 147 { 148 if (smp_ops.smp_init_cpus) 149 smp_ops.smp_init_cpus(); 150 } 151 152 int platform_can_secondary_boot(void) 153 { 154 return !!smp_ops.smp_boot_secondary; 155 } 156 157 int platform_can_cpu_hotplug(void) 158 { 159 #ifdef CONFIG_HOTPLUG_CPU 160 if (smp_ops.cpu_kill) 161 return 1; 162 #endif 163 164 return 0; 165 } 166 167 #ifdef CONFIG_HOTPLUG_CPU 168 static int platform_cpu_kill(unsigned int cpu) 169 { 170 if (smp_ops.cpu_kill) 171 return smp_ops.cpu_kill(cpu); 172 return 1; 173 } 174 175 static int platform_cpu_disable(unsigned int cpu) 176 { 177 if (smp_ops.cpu_disable) 178 return smp_ops.cpu_disable(cpu); 179 180 return 0; 181 } 182 183 int platform_can_hotplug_cpu(unsigned int cpu) 184 { 185 /* cpu_die must be specified to support hotplug */ 186 if (!smp_ops.cpu_die) 187 return 0; 188 189 if (smp_ops.cpu_can_disable) 190 return smp_ops.cpu_can_disable(cpu); 191 192 /* 193 * By default, allow disabling all CPUs except the first one, 194 * since this is special on a lot of platforms, e.g. because 195 * of clock tick interrupts. 196 */ 197 return cpu != 0; 198 } 199 200 /* 201 * __cpu_disable runs on the processor to be shutdown. 202 */ 203 int __cpu_disable(void) 204 { 205 unsigned int cpu = smp_processor_id(); 206 int ret; 207 208 ret = platform_cpu_disable(cpu); 209 if (ret) 210 return ret; 211 212 /* 213 * Take this CPU offline. Once we clear this, we can't return, 214 * and we must not schedule until we're ready to give up the cpu. 215 */ 216 set_cpu_online(cpu, false); 217 218 /* 219 * OK - migrate IRQs away from this CPU 220 */ 221 migrate_irqs(); 222 223 /* 224 * Flush user cache and TLB mappings, and then remove this CPU 225 * from the vm mask set of all processes. 226 * 227 * Caches are flushed to the Level of Unification Inner Shareable 228 * to write-back dirty lines to unified caches shared by all CPUs. 229 */ 230 flush_cache_louis(); 231 local_flush_tlb_all(); 232 233 clear_tasks_mm_cpumask(cpu); 234 235 return 0; 236 } 237 238 static DECLARE_COMPLETION(cpu_died); 239 240 /* 241 * called on the thread which is asking for a CPU to be shutdown - 242 * waits until shutdown has completed, or it is timed out. 243 */ 244 void __cpu_die(unsigned int cpu) 245 { 246 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 247 pr_err("CPU%u: cpu didn't die\n", cpu); 248 return; 249 } 250 pr_notice("CPU%u: shutdown\n", cpu); 251 252 /* 253 * platform_cpu_kill() is generally expected to do the powering off 254 * and/or cutting of clocks to the dying CPU. Optionally, this may 255 * be done by the CPU which is dying in preference to supporting 256 * this call, but that means there is _no_ synchronisation between 257 * the requesting CPU and the dying CPU actually losing power. 258 */ 259 if (!platform_cpu_kill(cpu)) 260 pr_err("CPU%u: unable to kill\n", cpu); 261 } 262 263 /* 264 * Called from the idle thread for the CPU which has been shutdown. 265 * 266 * Note that we disable IRQs here, but do not re-enable them 267 * before returning to the caller. This is also the behaviour 268 * of the other hotplug-cpu capable cores, so presumably coming 269 * out of idle fixes this. 270 */ 271 void arch_cpu_idle_dead(void) 272 { 273 unsigned int cpu = smp_processor_id(); 274 275 idle_task_exit(); 276 277 local_irq_disable(); 278 279 /* 280 * Flush the data out of the L1 cache for this CPU. This must be 281 * before the completion to ensure that data is safely written out 282 * before platform_cpu_kill() gets called - which may disable 283 * *this* CPU and power down its cache. 284 */ 285 flush_cache_louis(); 286 287 /* 288 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 289 * this returns, power and/or clocks can be removed at any point 290 * from this CPU and its cache by platform_cpu_kill(). 291 */ 292 complete(&cpu_died); 293 294 /* 295 * Ensure that the cache lines associated with that completion are 296 * written out. This covers the case where _this_ CPU is doing the 297 * powering down, to ensure that the completion is visible to the 298 * CPU waiting for this one. 299 */ 300 flush_cache_louis(); 301 302 /* 303 * The actual CPU shutdown procedure is at least platform (if not 304 * CPU) specific. This may remove power, or it may simply spin. 305 * 306 * Platforms are generally expected *NOT* to return from this call, 307 * although there are some which do because they have no way to 308 * power down the CPU. These platforms are the _only_ reason we 309 * have a return path which uses the fragment of assembly below. 310 * 311 * The return path should not be used for platforms which can 312 * power off the CPU. 313 */ 314 if (smp_ops.cpu_die) 315 smp_ops.cpu_die(cpu); 316 317 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 318 cpu); 319 320 /* 321 * Do not return to the idle loop - jump back to the secondary 322 * cpu initialisation. There's some initialisation which needs 323 * to be repeated to undo the effects of taking the CPU offline. 324 */ 325 __asm__("mov sp, %0\n" 326 " mov fp, #0\n" 327 " b secondary_start_kernel" 328 : 329 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 330 } 331 #endif /* CONFIG_HOTPLUG_CPU */ 332 333 /* 334 * Called by both boot and secondaries to move global data into 335 * per-processor storage. 336 */ 337 static void smp_store_cpu_info(unsigned int cpuid) 338 { 339 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 340 341 cpu_info->loops_per_jiffy = loops_per_jiffy; 342 cpu_info->cpuid = read_cpuid_id(); 343 344 store_cpu_topology(cpuid); 345 } 346 347 /* 348 * This is the secondary CPU boot entry. We're using this CPUs 349 * idle thread stack, but a set of temporary page tables. 350 */ 351 asmlinkage void secondary_start_kernel(void) 352 { 353 struct mm_struct *mm = &init_mm; 354 unsigned int cpu; 355 356 /* 357 * The identity mapping is uncached (strongly ordered), so 358 * switch away from it before attempting any exclusive accesses. 359 */ 360 cpu_switch_mm(mm->pgd, mm); 361 local_flush_bp_all(); 362 enter_lazy_tlb(mm, current); 363 local_flush_tlb_all(); 364 365 /* 366 * All kernel threads share the same mm context; grab a 367 * reference and switch to it. 368 */ 369 cpu = smp_processor_id(); 370 atomic_inc(&mm->mm_count); 371 current->active_mm = mm; 372 cpumask_set_cpu(cpu, mm_cpumask(mm)); 373 374 cpu_init(); 375 376 pr_debug("CPU%u: Booted secondary processor\n", cpu); 377 378 preempt_disable(); 379 trace_hardirqs_off(); 380 381 /* 382 * Give the platform a chance to do its own initialisation. 383 */ 384 if (smp_ops.smp_secondary_init) 385 smp_ops.smp_secondary_init(cpu); 386 387 notify_cpu_starting(cpu); 388 389 calibrate_delay(); 390 391 smp_store_cpu_info(cpu); 392 393 /* 394 * OK, now it's safe to let the boot CPU continue. Wait for 395 * the CPU migration code to notice that the CPU is online 396 * before we continue - which happens after __cpu_up returns. 397 */ 398 set_cpu_online(cpu, true); 399 complete(&cpu_running); 400 401 local_irq_enable(); 402 local_fiq_enable(); 403 local_abt_enable(); 404 405 /* 406 * OK, it's off to the idle thread for us 407 */ 408 cpu_startup_entry(CPUHP_ONLINE); 409 } 410 411 void __init smp_cpus_done(unsigned int max_cpus) 412 { 413 int cpu; 414 unsigned long bogosum = 0; 415 416 for_each_online_cpu(cpu) 417 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 418 419 printk(KERN_INFO "SMP: Total of %d processors activated " 420 "(%lu.%02lu BogoMIPS).\n", 421 num_online_cpus(), 422 bogosum / (500000/HZ), 423 (bogosum / (5000/HZ)) % 100); 424 425 hyp_mode_check(); 426 } 427 428 void __init smp_prepare_boot_cpu(void) 429 { 430 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 431 } 432 433 void __init smp_prepare_cpus(unsigned int max_cpus) 434 { 435 unsigned int ncores = num_possible_cpus(); 436 437 init_cpu_topology(); 438 439 smp_store_cpu_info(smp_processor_id()); 440 441 /* 442 * are we trying to boot more cores than exist? 443 */ 444 if (max_cpus > ncores) 445 max_cpus = ncores; 446 if (ncores > 1 && max_cpus) { 447 /* 448 * Initialise the present map, which describes the set of CPUs 449 * actually populated at the present time. A platform should 450 * re-initialize the map in the platforms smp_prepare_cpus() 451 * if present != possible (e.g. physical hotplug). 452 */ 453 init_cpu_present(cpu_possible_mask); 454 455 /* 456 * Initialise the SCU if there are more than one CPU 457 * and let them know where to start. 458 */ 459 if (smp_ops.smp_prepare_cpus) 460 smp_ops.smp_prepare_cpus(max_cpus); 461 } 462 } 463 464 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 465 466 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 467 { 468 if (!__smp_cross_call) 469 __smp_cross_call = fn; 470 } 471 472 static const char *ipi_types[NR_IPI] __tracepoint_string = { 473 #define S(x,s) [x] = s 474 S(IPI_WAKEUP, "CPU wakeup interrupts"), 475 S(IPI_TIMER, "Timer broadcast interrupts"), 476 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 477 S(IPI_CALL_FUNC, "Function call interrupts"), 478 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 479 S(IPI_CPU_STOP, "CPU stop interrupts"), 480 S(IPI_IRQ_WORK, "IRQ work interrupts"), 481 S(IPI_COMPLETION, "completion interrupts"), 482 }; 483 484 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 485 { 486 trace_ipi_raise(target, ipi_types[ipinr]); 487 __smp_cross_call(target, ipinr); 488 } 489 490 void show_ipi_list(struct seq_file *p, int prec) 491 { 492 unsigned int cpu, i; 493 494 for (i = 0; i < NR_IPI; i++) { 495 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 496 497 for_each_online_cpu(cpu) 498 seq_printf(p, "%10u ", 499 __get_irq_stat(cpu, ipi_irqs[i])); 500 501 seq_printf(p, " %s\n", ipi_types[i]); 502 } 503 } 504 505 u64 smp_irq_stat_cpu(unsigned int cpu) 506 { 507 u64 sum = 0; 508 int i; 509 510 for (i = 0; i < NR_IPI; i++) 511 sum += __get_irq_stat(cpu, ipi_irqs[i]); 512 513 return sum; 514 } 515 516 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 517 { 518 smp_cross_call(mask, IPI_CALL_FUNC); 519 } 520 521 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 522 { 523 smp_cross_call(mask, IPI_WAKEUP); 524 } 525 526 void arch_send_call_function_single_ipi(int cpu) 527 { 528 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 529 } 530 531 #ifdef CONFIG_IRQ_WORK 532 void arch_irq_work_raise(void) 533 { 534 if (arch_irq_work_has_interrupt()) 535 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 536 } 537 #endif 538 539 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 540 void tick_broadcast(const struct cpumask *mask) 541 { 542 smp_cross_call(mask, IPI_TIMER); 543 } 544 #endif 545 546 static DEFINE_RAW_SPINLOCK(stop_lock); 547 548 /* 549 * ipi_cpu_stop - handle IPI from smp_send_stop() 550 */ 551 static void ipi_cpu_stop(unsigned int cpu) 552 { 553 if (system_state == SYSTEM_BOOTING || 554 system_state == SYSTEM_RUNNING) { 555 raw_spin_lock(&stop_lock); 556 pr_crit("CPU%u: stopping\n", cpu); 557 dump_stack(); 558 raw_spin_unlock(&stop_lock); 559 } 560 561 set_cpu_online(cpu, false); 562 563 local_fiq_disable(); 564 local_irq_disable(); 565 566 while (1) 567 cpu_relax(); 568 } 569 570 static DEFINE_PER_CPU(struct completion *, cpu_completion); 571 572 int register_ipi_completion(struct completion *completion, int cpu) 573 { 574 per_cpu(cpu_completion, cpu) = completion; 575 return IPI_COMPLETION; 576 } 577 578 static void ipi_complete(unsigned int cpu) 579 { 580 complete(per_cpu(cpu_completion, cpu)); 581 } 582 583 /* 584 * Main handler for inter-processor interrupts 585 */ 586 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 587 { 588 handle_IPI(ipinr, regs); 589 } 590 591 void handle_IPI(int ipinr, struct pt_regs *regs) 592 { 593 unsigned int cpu = smp_processor_id(); 594 struct pt_regs *old_regs = set_irq_regs(regs); 595 596 if ((unsigned)ipinr < NR_IPI) { 597 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 598 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 599 } 600 601 switch (ipinr) { 602 case IPI_WAKEUP: 603 break; 604 605 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 606 case IPI_TIMER: 607 irq_enter(); 608 tick_receive_broadcast(); 609 irq_exit(); 610 break; 611 #endif 612 613 case IPI_RESCHEDULE: 614 scheduler_ipi(); 615 break; 616 617 case IPI_CALL_FUNC: 618 irq_enter(); 619 generic_smp_call_function_interrupt(); 620 irq_exit(); 621 break; 622 623 case IPI_CALL_FUNC_SINGLE: 624 irq_enter(); 625 generic_smp_call_function_single_interrupt(); 626 irq_exit(); 627 break; 628 629 case IPI_CPU_STOP: 630 irq_enter(); 631 ipi_cpu_stop(cpu); 632 irq_exit(); 633 break; 634 635 #ifdef CONFIG_IRQ_WORK 636 case IPI_IRQ_WORK: 637 irq_enter(); 638 irq_work_run(); 639 irq_exit(); 640 break; 641 #endif 642 643 case IPI_COMPLETION: 644 irq_enter(); 645 ipi_complete(cpu); 646 irq_exit(); 647 break; 648 649 case IPI_CPU_BACKTRACE: 650 irq_enter(); 651 nmi_cpu_backtrace(regs); 652 irq_exit(); 653 break; 654 655 default: 656 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 657 cpu, ipinr); 658 break; 659 } 660 661 if ((unsigned)ipinr < NR_IPI) 662 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 663 set_irq_regs(old_regs); 664 } 665 666 void smp_send_reschedule(int cpu) 667 { 668 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 669 } 670 671 void smp_send_stop(void) 672 { 673 unsigned long timeout; 674 struct cpumask mask; 675 676 cpumask_copy(&mask, cpu_online_mask); 677 cpumask_clear_cpu(smp_processor_id(), &mask); 678 if (!cpumask_empty(&mask)) 679 smp_cross_call(&mask, IPI_CPU_STOP); 680 681 /* Wait up to one second for other CPUs to stop */ 682 timeout = USEC_PER_SEC; 683 while (num_online_cpus() > 1 && timeout--) 684 udelay(1); 685 686 if (num_online_cpus() > 1) 687 pr_warn("SMP: failed to stop secondary CPUs\n"); 688 } 689 690 /* 691 * not supported here 692 */ 693 int setup_profiling_timer(unsigned int multiplier) 694 { 695 return -EINVAL; 696 } 697 698 #ifdef CONFIG_CPU_FREQ 699 700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 702 static unsigned long global_l_p_j_ref; 703 static unsigned long global_l_p_j_ref_freq; 704 705 static int cpufreq_callback(struct notifier_block *nb, 706 unsigned long val, void *data) 707 { 708 struct cpufreq_freqs *freq = data; 709 int cpu = freq->cpu; 710 711 if (freq->flags & CPUFREQ_CONST_LOOPS) 712 return NOTIFY_OK; 713 714 if (!per_cpu(l_p_j_ref, cpu)) { 715 per_cpu(l_p_j_ref, cpu) = 716 per_cpu(cpu_data, cpu).loops_per_jiffy; 717 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 718 if (!global_l_p_j_ref) { 719 global_l_p_j_ref = loops_per_jiffy; 720 global_l_p_j_ref_freq = freq->old; 721 } 722 } 723 724 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 725 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 726 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 727 global_l_p_j_ref_freq, 728 freq->new); 729 per_cpu(cpu_data, cpu).loops_per_jiffy = 730 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 731 per_cpu(l_p_j_ref_freq, cpu), 732 freq->new); 733 } 734 return NOTIFY_OK; 735 } 736 737 static struct notifier_block cpufreq_notifier = { 738 .notifier_call = cpufreq_callback, 739 }; 740 741 static int __init register_cpufreq_notifier(void) 742 { 743 return cpufreq_register_notifier(&cpufreq_notifier, 744 CPUFREQ_TRANSITION_NOTIFIER); 745 } 746 core_initcall(register_cpufreq_notifier); 747 748 #endif 749 750 static void raise_nmi(cpumask_t *mask) 751 { 752 /* 753 * Generate the backtrace directly if we are running in a calling 754 * context that is not preemptible by the backtrace IPI. Note 755 * that nmi_cpu_backtrace() automatically removes the current cpu 756 * from mask. 757 */ 758 if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled()) 759 nmi_cpu_backtrace(NULL); 760 761 smp_cross_call(mask, IPI_CPU_BACKTRACE); 762 } 763 764 void arch_trigger_all_cpu_backtrace(bool include_self) 765 { 766 nmi_trigger_all_cpu_backtrace(include_self, raise_nmi); 767 } 768