xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 9cfc5c90)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66 
67 enum ipi_msg_type {
68 	IPI_WAKEUP,
69 	IPI_TIMER,
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CALL_FUNC_SINGLE,
73 	IPI_CPU_STOP,
74 	IPI_IRQ_WORK,
75 	IPI_COMPLETION,
76 	IPI_CPU_BACKTRACE = 15,
77 };
78 
79 static DECLARE_COMPLETION(cpu_running);
80 
81 static struct smp_operations smp_ops;
82 
83 void __init smp_set_ops(const struct smp_operations *ops)
84 {
85 	if (ops)
86 		smp_ops = *ops;
87 };
88 
89 static unsigned long get_arch_pgd(pgd_t *pgd)
90 {
91 #ifdef CONFIG_ARM_LPAE
92 	return __phys_to_pfn(virt_to_phys(pgd));
93 #else
94 	return virt_to_phys(pgd);
95 #endif
96 }
97 
98 int __cpu_up(unsigned int cpu, struct task_struct *idle)
99 {
100 	int ret;
101 
102 	if (!smp_ops.smp_boot_secondary)
103 		return -ENOSYS;
104 
105 	/*
106 	 * We need to tell the secondary core where to find
107 	 * its stack and the page tables.
108 	 */
109 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
110 #ifdef CONFIG_ARM_MPU
111 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
112 #endif
113 
114 #ifdef CONFIG_MMU
115 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
116 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
117 #endif
118 	sync_cache_w(&secondary_data);
119 
120 	/*
121 	 * Now bring the CPU into our world.
122 	 */
123 	ret = smp_ops.smp_boot_secondary(cpu, idle);
124 	if (ret == 0) {
125 		/*
126 		 * CPU was successfully started, wait for it
127 		 * to come online or time out.
128 		 */
129 		wait_for_completion_timeout(&cpu_running,
130 						 msecs_to_jiffies(1000));
131 
132 		if (!cpu_online(cpu)) {
133 			pr_crit("CPU%u: failed to come online\n", cpu);
134 			ret = -EIO;
135 		}
136 	} else {
137 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
138 	}
139 
140 
141 	memset(&secondary_data, 0, sizeof(secondary_data));
142 	return ret;
143 }
144 
145 /* platform specific SMP operations */
146 void __init smp_init_cpus(void)
147 {
148 	if (smp_ops.smp_init_cpus)
149 		smp_ops.smp_init_cpus();
150 }
151 
152 int platform_can_secondary_boot(void)
153 {
154 	return !!smp_ops.smp_boot_secondary;
155 }
156 
157 int platform_can_cpu_hotplug(void)
158 {
159 #ifdef CONFIG_HOTPLUG_CPU
160 	if (smp_ops.cpu_kill)
161 		return 1;
162 #endif
163 
164 	return 0;
165 }
166 
167 #ifdef CONFIG_HOTPLUG_CPU
168 static int platform_cpu_kill(unsigned int cpu)
169 {
170 	if (smp_ops.cpu_kill)
171 		return smp_ops.cpu_kill(cpu);
172 	return 1;
173 }
174 
175 static int platform_cpu_disable(unsigned int cpu)
176 {
177 	if (smp_ops.cpu_disable)
178 		return smp_ops.cpu_disable(cpu);
179 
180 	return 0;
181 }
182 
183 int platform_can_hotplug_cpu(unsigned int cpu)
184 {
185 	/* cpu_die must be specified to support hotplug */
186 	if (!smp_ops.cpu_die)
187 		return 0;
188 
189 	if (smp_ops.cpu_can_disable)
190 		return smp_ops.cpu_can_disable(cpu);
191 
192 	/*
193 	 * By default, allow disabling all CPUs except the first one,
194 	 * since this is special on a lot of platforms, e.g. because
195 	 * of clock tick interrupts.
196 	 */
197 	return cpu != 0;
198 }
199 
200 /*
201  * __cpu_disable runs on the processor to be shutdown.
202  */
203 int __cpu_disable(void)
204 {
205 	unsigned int cpu = smp_processor_id();
206 	int ret;
207 
208 	ret = platform_cpu_disable(cpu);
209 	if (ret)
210 		return ret;
211 
212 	/*
213 	 * Take this CPU offline.  Once we clear this, we can't return,
214 	 * and we must not schedule until we're ready to give up the cpu.
215 	 */
216 	set_cpu_online(cpu, false);
217 
218 	/*
219 	 * OK - migrate IRQs away from this CPU
220 	 */
221 	migrate_irqs();
222 
223 	/*
224 	 * Flush user cache and TLB mappings, and then remove this CPU
225 	 * from the vm mask set of all processes.
226 	 *
227 	 * Caches are flushed to the Level of Unification Inner Shareable
228 	 * to write-back dirty lines to unified caches shared by all CPUs.
229 	 */
230 	flush_cache_louis();
231 	local_flush_tlb_all();
232 
233 	clear_tasks_mm_cpumask(cpu);
234 
235 	return 0;
236 }
237 
238 static DECLARE_COMPLETION(cpu_died);
239 
240 /*
241  * called on the thread which is asking for a CPU to be shutdown -
242  * waits until shutdown has completed, or it is timed out.
243  */
244 void __cpu_die(unsigned int cpu)
245 {
246 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
247 		pr_err("CPU%u: cpu didn't die\n", cpu);
248 		return;
249 	}
250 	pr_notice("CPU%u: shutdown\n", cpu);
251 
252 	/*
253 	 * platform_cpu_kill() is generally expected to do the powering off
254 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
255 	 * be done by the CPU which is dying in preference to supporting
256 	 * this call, but that means there is _no_ synchronisation between
257 	 * the requesting CPU and the dying CPU actually losing power.
258 	 */
259 	if (!platform_cpu_kill(cpu))
260 		pr_err("CPU%u: unable to kill\n", cpu);
261 }
262 
263 /*
264  * Called from the idle thread for the CPU which has been shutdown.
265  *
266  * Note that we disable IRQs here, but do not re-enable them
267  * before returning to the caller. This is also the behaviour
268  * of the other hotplug-cpu capable cores, so presumably coming
269  * out of idle fixes this.
270  */
271 void arch_cpu_idle_dead(void)
272 {
273 	unsigned int cpu = smp_processor_id();
274 
275 	idle_task_exit();
276 
277 	local_irq_disable();
278 
279 	/*
280 	 * Flush the data out of the L1 cache for this CPU.  This must be
281 	 * before the completion to ensure that data is safely written out
282 	 * before platform_cpu_kill() gets called - which may disable
283 	 * *this* CPU and power down its cache.
284 	 */
285 	flush_cache_louis();
286 
287 	/*
288 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
289 	 * this returns, power and/or clocks can be removed at any point
290 	 * from this CPU and its cache by platform_cpu_kill().
291 	 */
292 	complete(&cpu_died);
293 
294 	/*
295 	 * Ensure that the cache lines associated with that completion are
296 	 * written out.  This covers the case where _this_ CPU is doing the
297 	 * powering down, to ensure that the completion is visible to the
298 	 * CPU waiting for this one.
299 	 */
300 	flush_cache_louis();
301 
302 	/*
303 	 * The actual CPU shutdown procedure is at least platform (if not
304 	 * CPU) specific.  This may remove power, or it may simply spin.
305 	 *
306 	 * Platforms are generally expected *NOT* to return from this call,
307 	 * although there are some which do because they have no way to
308 	 * power down the CPU.  These platforms are the _only_ reason we
309 	 * have a return path which uses the fragment of assembly below.
310 	 *
311 	 * The return path should not be used for platforms which can
312 	 * power off the CPU.
313 	 */
314 	if (smp_ops.cpu_die)
315 		smp_ops.cpu_die(cpu);
316 
317 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
318 		cpu);
319 
320 	/*
321 	 * Do not return to the idle loop - jump back to the secondary
322 	 * cpu initialisation.  There's some initialisation which needs
323 	 * to be repeated to undo the effects of taking the CPU offline.
324 	 */
325 	__asm__("mov	sp, %0\n"
326 	"	mov	fp, #0\n"
327 	"	b	secondary_start_kernel"
328 		:
329 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
330 }
331 #endif /* CONFIG_HOTPLUG_CPU */
332 
333 /*
334  * Called by both boot and secondaries to move global data into
335  * per-processor storage.
336  */
337 static void smp_store_cpu_info(unsigned int cpuid)
338 {
339 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
340 
341 	cpu_info->loops_per_jiffy = loops_per_jiffy;
342 	cpu_info->cpuid = read_cpuid_id();
343 
344 	store_cpu_topology(cpuid);
345 }
346 
347 /*
348  * This is the secondary CPU boot entry.  We're using this CPUs
349  * idle thread stack, but a set of temporary page tables.
350  */
351 asmlinkage void secondary_start_kernel(void)
352 {
353 	struct mm_struct *mm = &init_mm;
354 	unsigned int cpu;
355 
356 	/*
357 	 * The identity mapping is uncached (strongly ordered), so
358 	 * switch away from it before attempting any exclusive accesses.
359 	 */
360 	cpu_switch_mm(mm->pgd, mm);
361 	local_flush_bp_all();
362 	enter_lazy_tlb(mm, current);
363 	local_flush_tlb_all();
364 
365 	/*
366 	 * All kernel threads share the same mm context; grab a
367 	 * reference and switch to it.
368 	 */
369 	cpu = smp_processor_id();
370 	atomic_inc(&mm->mm_count);
371 	current->active_mm = mm;
372 	cpumask_set_cpu(cpu, mm_cpumask(mm));
373 
374 	cpu_init();
375 
376 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
377 
378 	preempt_disable();
379 	trace_hardirqs_off();
380 
381 	/*
382 	 * Give the platform a chance to do its own initialisation.
383 	 */
384 	if (smp_ops.smp_secondary_init)
385 		smp_ops.smp_secondary_init(cpu);
386 
387 	notify_cpu_starting(cpu);
388 
389 	calibrate_delay();
390 
391 	smp_store_cpu_info(cpu);
392 
393 	/*
394 	 * OK, now it's safe to let the boot CPU continue.  Wait for
395 	 * the CPU migration code to notice that the CPU is online
396 	 * before we continue - which happens after __cpu_up returns.
397 	 */
398 	set_cpu_online(cpu, true);
399 	complete(&cpu_running);
400 
401 	local_irq_enable();
402 	local_fiq_enable();
403 	local_abt_enable();
404 
405 	/*
406 	 * OK, it's off to the idle thread for us
407 	 */
408 	cpu_startup_entry(CPUHP_ONLINE);
409 }
410 
411 void __init smp_cpus_done(unsigned int max_cpus)
412 {
413 	int cpu;
414 	unsigned long bogosum = 0;
415 
416 	for_each_online_cpu(cpu)
417 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
418 
419 	printk(KERN_INFO "SMP: Total of %d processors activated "
420 	       "(%lu.%02lu BogoMIPS).\n",
421 	       num_online_cpus(),
422 	       bogosum / (500000/HZ),
423 	       (bogosum / (5000/HZ)) % 100);
424 
425 	hyp_mode_check();
426 }
427 
428 void __init smp_prepare_boot_cpu(void)
429 {
430 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
431 }
432 
433 void __init smp_prepare_cpus(unsigned int max_cpus)
434 {
435 	unsigned int ncores = num_possible_cpus();
436 
437 	init_cpu_topology();
438 
439 	smp_store_cpu_info(smp_processor_id());
440 
441 	/*
442 	 * are we trying to boot more cores than exist?
443 	 */
444 	if (max_cpus > ncores)
445 		max_cpus = ncores;
446 	if (ncores > 1 && max_cpus) {
447 		/*
448 		 * Initialise the present map, which describes the set of CPUs
449 		 * actually populated at the present time. A platform should
450 		 * re-initialize the map in the platforms smp_prepare_cpus()
451 		 * if present != possible (e.g. physical hotplug).
452 		 */
453 		init_cpu_present(cpu_possible_mask);
454 
455 		/*
456 		 * Initialise the SCU if there are more than one CPU
457 		 * and let them know where to start.
458 		 */
459 		if (smp_ops.smp_prepare_cpus)
460 			smp_ops.smp_prepare_cpus(max_cpus);
461 	}
462 }
463 
464 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
465 
466 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
467 {
468 	if (!__smp_cross_call)
469 		__smp_cross_call = fn;
470 }
471 
472 static const char *ipi_types[NR_IPI] __tracepoint_string = {
473 #define S(x,s)	[x] = s
474 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
475 	S(IPI_TIMER, "Timer broadcast interrupts"),
476 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
477 	S(IPI_CALL_FUNC, "Function call interrupts"),
478 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
479 	S(IPI_CPU_STOP, "CPU stop interrupts"),
480 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
481 	S(IPI_COMPLETION, "completion interrupts"),
482 };
483 
484 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
485 {
486 	trace_ipi_raise(target, ipi_types[ipinr]);
487 	__smp_cross_call(target, ipinr);
488 }
489 
490 void show_ipi_list(struct seq_file *p, int prec)
491 {
492 	unsigned int cpu, i;
493 
494 	for (i = 0; i < NR_IPI; i++) {
495 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
496 
497 		for_each_online_cpu(cpu)
498 			seq_printf(p, "%10u ",
499 				   __get_irq_stat(cpu, ipi_irqs[i]));
500 
501 		seq_printf(p, " %s\n", ipi_types[i]);
502 	}
503 }
504 
505 u64 smp_irq_stat_cpu(unsigned int cpu)
506 {
507 	u64 sum = 0;
508 	int i;
509 
510 	for (i = 0; i < NR_IPI; i++)
511 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
512 
513 	return sum;
514 }
515 
516 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
517 {
518 	smp_cross_call(mask, IPI_CALL_FUNC);
519 }
520 
521 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
522 {
523 	smp_cross_call(mask, IPI_WAKEUP);
524 }
525 
526 void arch_send_call_function_single_ipi(int cpu)
527 {
528 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
529 }
530 
531 #ifdef CONFIG_IRQ_WORK
532 void arch_irq_work_raise(void)
533 {
534 	if (arch_irq_work_has_interrupt())
535 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
536 }
537 #endif
538 
539 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
540 void tick_broadcast(const struct cpumask *mask)
541 {
542 	smp_cross_call(mask, IPI_TIMER);
543 }
544 #endif
545 
546 static DEFINE_RAW_SPINLOCK(stop_lock);
547 
548 /*
549  * ipi_cpu_stop - handle IPI from smp_send_stop()
550  */
551 static void ipi_cpu_stop(unsigned int cpu)
552 {
553 	if (system_state == SYSTEM_BOOTING ||
554 	    system_state == SYSTEM_RUNNING) {
555 		raw_spin_lock(&stop_lock);
556 		pr_crit("CPU%u: stopping\n", cpu);
557 		dump_stack();
558 		raw_spin_unlock(&stop_lock);
559 	}
560 
561 	set_cpu_online(cpu, false);
562 
563 	local_fiq_disable();
564 	local_irq_disable();
565 
566 	while (1)
567 		cpu_relax();
568 }
569 
570 static DEFINE_PER_CPU(struct completion *, cpu_completion);
571 
572 int register_ipi_completion(struct completion *completion, int cpu)
573 {
574 	per_cpu(cpu_completion, cpu) = completion;
575 	return IPI_COMPLETION;
576 }
577 
578 static void ipi_complete(unsigned int cpu)
579 {
580 	complete(per_cpu(cpu_completion, cpu));
581 }
582 
583 /*
584  * Main handler for inter-processor interrupts
585  */
586 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
587 {
588 	handle_IPI(ipinr, regs);
589 }
590 
591 void handle_IPI(int ipinr, struct pt_regs *regs)
592 {
593 	unsigned int cpu = smp_processor_id();
594 	struct pt_regs *old_regs = set_irq_regs(regs);
595 
596 	if ((unsigned)ipinr < NR_IPI) {
597 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
598 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
599 	}
600 
601 	switch (ipinr) {
602 	case IPI_WAKEUP:
603 		break;
604 
605 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
606 	case IPI_TIMER:
607 		irq_enter();
608 		tick_receive_broadcast();
609 		irq_exit();
610 		break;
611 #endif
612 
613 	case IPI_RESCHEDULE:
614 		scheduler_ipi();
615 		break;
616 
617 	case IPI_CALL_FUNC:
618 		irq_enter();
619 		generic_smp_call_function_interrupt();
620 		irq_exit();
621 		break;
622 
623 	case IPI_CALL_FUNC_SINGLE:
624 		irq_enter();
625 		generic_smp_call_function_single_interrupt();
626 		irq_exit();
627 		break;
628 
629 	case IPI_CPU_STOP:
630 		irq_enter();
631 		ipi_cpu_stop(cpu);
632 		irq_exit();
633 		break;
634 
635 #ifdef CONFIG_IRQ_WORK
636 	case IPI_IRQ_WORK:
637 		irq_enter();
638 		irq_work_run();
639 		irq_exit();
640 		break;
641 #endif
642 
643 	case IPI_COMPLETION:
644 		irq_enter();
645 		ipi_complete(cpu);
646 		irq_exit();
647 		break;
648 
649 	case IPI_CPU_BACKTRACE:
650 		irq_enter();
651 		nmi_cpu_backtrace(regs);
652 		irq_exit();
653 		break;
654 
655 	default:
656 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
657 		        cpu, ipinr);
658 		break;
659 	}
660 
661 	if ((unsigned)ipinr < NR_IPI)
662 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
663 	set_irq_regs(old_regs);
664 }
665 
666 void smp_send_reschedule(int cpu)
667 {
668 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
669 }
670 
671 void smp_send_stop(void)
672 {
673 	unsigned long timeout;
674 	struct cpumask mask;
675 
676 	cpumask_copy(&mask, cpu_online_mask);
677 	cpumask_clear_cpu(smp_processor_id(), &mask);
678 	if (!cpumask_empty(&mask))
679 		smp_cross_call(&mask, IPI_CPU_STOP);
680 
681 	/* Wait up to one second for other CPUs to stop */
682 	timeout = USEC_PER_SEC;
683 	while (num_online_cpus() > 1 && timeout--)
684 		udelay(1);
685 
686 	if (num_online_cpus() > 1)
687 		pr_warn("SMP: failed to stop secondary CPUs\n");
688 }
689 
690 /*
691  * not supported here
692  */
693 int setup_profiling_timer(unsigned int multiplier)
694 {
695 	return -EINVAL;
696 }
697 
698 #ifdef CONFIG_CPU_FREQ
699 
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
702 static unsigned long global_l_p_j_ref;
703 static unsigned long global_l_p_j_ref_freq;
704 
705 static int cpufreq_callback(struct notifier_block *nb,
706 					unsigned long val, void *data)
707 {
708 	struct cpufreq_freqs *freq = data;
709 	int cpu = freq->cpu;
710 
711 	if (freq->flags & CPUFREQ_CONST_LOOPS)
712 		return NOTIFY_OK;
713 
714 	if (!per_cpu(l_p_j_ref, cpu)) {
715 		per_cpu(l_p_j_ref, cpu) =
716 			per_cpu(cpu_data, cpu).loops_per_jiffy;
717 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
718 		if (!global_l_p_j_ref) {
719 			global_l_p_j_ref = loops_per_jiffy;
720 			global_l_p_j_ref_freq = freq->old;
721 		}
722 	}
723 
724 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
725 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
726 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
727 						global_l_p_j_ref_freq,
728 						freq->new);
729 		per_cpu(cpu_data, cpu).loops_per_jiffy =
730 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
731 					per_cpu(l_p_j_ref_freq, cpu),
732 					freq->new);
733 	}
734 	return NOTIFY_OK;
735 }
736 
737 static struct notifier_block cpufreq_notifier = {
738 	.notifier_call  = cpufreq_callback,
739 };
740 
741 static int __init register_cpufreq_notifier(void)
742 {
743 	return cpufreq_register_notifier(&cpufreq_notifier,
744 						CPUFREQ_TRANSITION_NOTIFIER);
745 }
746 core_initcall(register_cpufreq_notifier);
747 
748 #endif
749 
750 static void raise_nmi(cpumask_t *mask)
751 {
752 	/*
753 	 * Generate the backtrace directly if we are running in a calling
754 	 * context that is not preemptible by the backtrace IPI. Note
755 	 * that nmi_cpu_backtrace() automatically removes the current cpu
756 	 * from mask.
757 	 */
758 	if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
759 		nmi_cpu_backtrace(NULL);
760 
761 	smp_cross_call(mask, IPI_CPU_BACKTRACE);
762 }
763 
764 void arch_trigger_all_cpu_backtrace(bool include_self)
765 {
766 	nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
767 }
768