1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/seq_file.h> 25 #include <linux/irq.h> 26 #include <linux/nmi.h> 27 #include <linux/percpu.h> 28 #include <linux/clockchips.h> 29 #include <linux/completion.h> 30 #include <linux/cpufreq.h> 31 #include <linux/irq_work.h> 32 33 #include <linux/atomic.h> 34 #include <asm/bugs.h> 35 #include <asm/smp.h> 36 #include <asm/cacheflush.h> 37 #include <asm/cpu.h> 38 #include <asm/cputype.h> 39 #include <asm/exception.h> 40 #include <asm/idmap.h> 41 #include <asm/topology.h> 42 #include <asm/mmu_context.h> 43 #include <asm/pgtable.h> 44 #include <asm/pgalloc.h> 45 #include <asm/procinfo.h> 46 #include <asm/processor.h> 47 #include <asm/sections.h> 48 #include <asm/tlbflush.h> 49 #include <asm/ptrace.h> 50 #include <asm/smp_plat.h> 51 #include <asm/virt.h> 52 #include <asm/mach/arch.h> 53 #include <asm/mpu.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ipi.h> 57 58 /* 59 * as from 2.5, kernels no longer have an init_tasks structure 60 * so we need some other way of telling a new secondary core 61 * where to place its SVC stack 62 */ 63 struct secondary_data secondary_data; 64 65 enum ipi_msg_type { 66 IPI_WAKEUP, 67 IPI_TIMER, 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 IPI_IRQ_WORK, 72 IPI_COMPLETION, 73 /* 74 * CPU_BACKTRACE is special and not included in NR_IPI 75 * or tracable with trace_ipi_* 76 */ 77 IPI_CPU_BACKTRACE, 78 /* 79 * SGI8-15 can be reserved by secure firmware, and thus may 80 * not be usable by the kernel. Please keep the above limited 81 * to at most 8 entries. 82 */ 83 }; 84 85 static DECLARE_COMPLETION(cpu_running); 86 87 static struct smp_operations smp_ops __ro_after_init; 88 89 void __init smp_set_ops(const struct smp_operations *ops) 90 { 91 if (ops) 92 smp_ops = *ops; 93 }; 94 95 static unsigned long get_arch_pgd(pgd_t *pgd) 96 { 97 #ifdef CONFIG_ARM_LPAE 98 return __phys_to_pfn(virt_to_phys(pgd)); 99 #else 100 return virt_to_phys(pgd); 101 #endif 102 } 103 104 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 105 static int secondary_biglittle_prepare(unsigned int cpu) 106 { 107 if (!cpu_vtable[cpu]) 108 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 109 110 return cpu_vtable[cpu] ? 0 : -ENOMEM; 111 } 112 113 static void secondary_biglittle_init(void) 114 { 115 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 116 } 117 #else 118 static int secondary_biglittle_prepare(unsigned int cpu) 119 { 120 return 0; 121 } 122 123 static void secondary_biglittle_init(void) 124 { 125 } 126 #endif 127 128 int __cpu_up(unsigned int cpu, struct task_struct *idle) 129 { 130 int ret; 131 132 if (!smp_ops.smp_boot_secondary) 133 return -ENOSYS; 134 135 ret = secondary_biglittle_prepare(cpu); 136 if (ret) 137 return ret; 138 139 /* 140 * We need to tell the secondary core where to find 141 * its stack and the page tables. 142 */ 143 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 144 #ifdef CONFIG_ARM_MPU 145 secondary_data.mpu_rgn_info = &mpu_rgn_info; 146 #endif 147 148 #ifdef CONFIG_MMU 149 secondary_data.pgdir = virt_to_phys(idmap_pgd); 150 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 151 #endif 152 sync_cache_w(&secondary_data); 153 154 /* 155 * Now bring the CPU into our world. 156 */ 157 ret = smp_ops.smp_boot_secondary(cpu, idle); 158 if (ret == 0) { 159 /* 160 * CPU was successfully started, wait for it 161 * to come online or time out. 162 */ 163 wait_for_completion_timeout(&cpu_running, 164 msecs_to_jiffies(1000)); 165 166 if (!cpu_online(cpu)) { 167 pr_crit("CPU%u: failed to come online\n", cpu); 168 ret = -EIO; 169 } 170 } else { 171 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 172 } 173 174 175 memset(&secondary_data, 0, sizeof(secondary_data)); 176 return ret; 177 } 178 179 /* platform specific SMP operations */ 180 void __init smp_init_cpus(void) 181 { 182 if (smp_ops.smp_init_cpus) 183 smp_ops.smp_init_cpus(); 184 } 185 186 int platform_can_secondary_boot(void) 187 { 188 return !!smp_ops.smp_boot_secondary; 189 } 190 191 int platform_can_cpu_hotplug(void) 192 { 193 #ifdef CONFIG_HOTPLUG_CPU 194 if (smp_ops.cpu_kill) 195 return 1; 196 #endif 197 198 return 0; 199 } 200 201 #ifdef CONFIG_HOTPLUG_CPU 202 static int platform_cpu_kill(unsigned int cpu) 203 { 204 if (smp_ops.cpu_kill) 205 return smp_ops.cpu_kill(cpu); 206 return 1; 207 } 208 209 static int platform_cpu_disable(unsigned int cpu) 210 { 211 if (smp_ops.cpu_disable) 212 return smp_ops.cpu_disable(cpu); 213 214 return 0; 215 } 216 217 int platform_can_hotplug_cpu(unsigned int cpu) 218 { 219 /* cpu_die must be specified to support hotplug */ 220 if (!smp_ops.cpu_die) 221 return 0; 222 223 if (smp_ops.cpu_can_disable) 224 return smp_ops.cpu_can_disable(cpu); 225 226 /* 227 * By default, allow disabling all CPUs except the first one, 228 * since this is special on a lot of platforms, e.g. because 229 * of clock tick interrupts. 230 */ 231 return cpu != 0; 232 } 233 234 /* 235 * __cpu_disable runs on the processor to be shutdown. 236 */ 237 int __cpu_disable(void) 238 { 239 unsigned int cpu = smp_processor_id(); 240 int ret; 241 242 ret = platform_cpu_disable(cpu); 243 if (ret) 244 return ret; 245 246 /* 247 * Take this CPU offline. Once we clear this, we can't return, 248 * and we must not schedule until we're ready to give up the cpu. 249 */ 250 set_cpu_online(cpu, false); 251 252 /* 253 * OK - migrate IRQs away from this CPU 254 */ 255 irq_migrate_all_off_this_cpu(); 256 257 /* 258 * Flush user cache and TLB mappings, and then remove this CPU 259 * from the vm mask set of all processes. 260 * 261 * Caches are flushed to the Level of Unification Inner Shareable 262 * to write-back dirty lines to unified caches shared by all CPUs. 263 */ 264 flush_cache_louis(); 265 local_flush_tlb_all(); 266 267 return 0; 268 } 269 270 static DECLARE_COMPLETION(cpu_died); 271 272 /* 273 * called on the thread which is asking for a CPU to be shutdown - 274 * waits until shutdown has completed, or it is timed out. 275 */ 276 void __cpu_die(unsigned int cpu) 277 { 278 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 279 pr_err("CPU%u: cpu didn't die\n", cpu); 280 return; 281 } 282 pr_debug("CPU%u: shutdown\n", cpu); 283 284 clear_tasks_mm_cpumask(cpu); 285 /* 286 * platform_cpu_kill() is generally expected to do the powering off 287 * and/or cutting of clocks to the dying CPU. Optionally, this may 288 * be done by the CPU which is dying in preference to supporting 289 * this call, but that means there is _no_ synchronisation between 290 * the requesting CPU and the dying CPU actually losing power. 291 */ 292 if (!platform_cpu_kill(cpu)) 293 pr_err("CPU%u: unable to kill\n", cpu); 294 } 295 296 /* 297 * Called from the idle thread for the CPU which has been shutdown. 298 * 299 * Note that we disable IRQs here, but do not re-enable them 300 * before returning to the caller. This is also the behaviour 301 * of the other hotplug-cpu capable cores, so presumably coming 302 * out of idle fixes this. 303 */ 304 void arch_cpu_idle_dead(void) 305 { 306 unsigned int cpu = smp_processor_id(); 307 308 idle_task_exit(); 309 310 local_irq_disable(); 311 312 /* 313 * Flush the data out of the L1 cache for this CPU. This must be 314 * before the completion to ensure that data is safely written out 315 * before platform_cpu_kill() gets called - which may disable 316 * *this* CPU and power down its cache. 317 */ 318 flush_cache_louis(); 319 320 /* 321 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 322 * this returns, power and/or clocks can be removed at any point 323 * from this CPU and its cache by platform_cpu_kill(). 324 */ 325 complete(&cpu_died); 326 327 /* 328 * Ensure that the cache lines associated with that completion are 329 * written out. This covers the case where _this_ CPU is doing the 330 * powering down, to ensure that the completion is visible to the 331 * CPU waiting for this one. 332 */ 333 flush_cache_louis(); 334 335 /* 336 * The actual CPU shutdown procedure is at least platform (if not 337 * CPU) specific. This may remove power, or it may simply spin. 338 * 339 * Platforms are generally expected *NOT* to return from this call, 340 * although there are some which do because they have no way to 341 * power down the CPU. These platforms are the _only_ reason we 342 * have a return path which uses the fragment of assembly below. 343 * 344 * The return path should not be used for platforms which can 345 * power off the CPU. 346 */ 347 if (smp_ops.cpu_die) 348 smp_ops.cpu_die(cpu); 349 350 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 351 cpu); 352 353 /* 354 * Do not return to the idle loop - jump back to the secondary 355 * cpu initialisation. There's some initialisation which needs 356 * to be repeated to undo the effects of taking the CPU offline. 357 */ 358 __asm__("mov sp, %0\n" 359 " mov fp, #0\n" 360 " b secondary_start_kernel" 361 : 362 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 363 } 364 #endif /* CONFIG_HOTPLUG_CPU */ 365 366 /* 367 * Called by both boot and secondaries to move global data into 368 * per-processor storage. 369 */ 370 static void smp_store_cpu_info(unsigned int cpuid) 371 { 372 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 373 374 cpu_info->loops_per_jiffy = loops_per_jiffy; 375 cpu_info->cpuid = read_cpuid_id(); 376 377 store_cpu_topology(cpuid); 378 } 379 380 /* 381 * This is the secondary CPU boot entry. We're using this CPUs 382 * idle thread stack, but a set of temporary page tables. 383 */ 384 asmlinkage void secondary_start_kernel(void) 385 { 386 struct mm_struct *mm = &init_mm; 387 unsigned int cpu; 388 389 secondary_biglittle_init(); 390 391 /* 392 * The identity mapping is uncached (strongly ordered), so 393 * switch away from it before attempting any exclusive accesses. 394 */ 395 cpu_switch_mm(mm->pgd, mm); 396 local_flush_bp_all(); 397 enter_lazy_tlb(mm, current); 398 local_flush_tlb_all(); 399 400 /* 401 * All kernel threads share the same mm context; grab a 402 * reference and switch to it. 403 */ 404 cpu = smp_processor_id(); 405 mmgrab(mm); 406 current->active_mm = mm; 407 cpumask_set_cpu(cpu, mm_cpumask(mm)); 408 409 cpu_init(); 410 411 #ifndef CONFIG_MMU 412 setup_vectors_base(); 413 #endif 414 pr_debug("CPU%u: Booted secondary processor\n", cpu); 415 416 preempt_disable(); 417 trace_hardirqs_off(); 418 419 /* 420 * Give the platform a chance to do its own initialisation. 421 */ 422 if (smp_ops.smp_secondary_init) 423 smp_ops.smp_secondary_init(cpu); 424 425 notify_cpu_starting(cpu); 426 427 calibrate_delay(); 428 429 smp_store_cpu_info(cpu); 430 431 /* 432 * OK, now it's safe to let the boot CPU continue. Wait for 433 * the CPU migration code to notice that the CPU is online 434 * before we continue - which happens after __cpu_up returns. 435 */ 436 set_cpu_online(cpu, true); 437 438 check_other_bugs(); 439 440 complete(&cpu_running); 441 442 local_irq_enable(); 443 local_fiq_enable(); 444 local_abt_enable(); 445 446 /* 447 * OK, it's off to the idle thread for us 448 */ 449 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 450 } 451 452 void __init smp_cpus_done(unsigned int max_cpus) 453 { 454 int cpu; 455 unsigned long bogosum = 0; 456 457 for_each_online_cpu(cpu) 458 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 459 460 printk(KERN_INFO "SMP: Total of %d processors activated " 461 "(%lu.%02lu BogoMIPS).\n", 462 num_online_cpus(), 463 bogosum / (500000/HZ), 464 (bogosum / (5000/HZ)) % 100); 465 466 hyp_mode_check(); 467 } 468 469 void __init smp_prepare_boot_cpu(void) 470 { 471 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 472 } 473 474 void __init smp_prepare_cpus(unsigned int max_cpus) 475 { 476 unsigned int ncores = num_possible_cpus(); 477 478 init_cpu_topology(); 479 480 smp_store_cpu_info(smp_processor_id()); 481 482 /* 483 * are we trying to boot more cores than exist? 484 */ 485 if (max_cpus > ncores) 486 max_cpus = ncores; 487 if (ncores > 1 && max_cpus) { 488 /* 489 * Initialise the present map, which describes the set of CPUs 490 * actually populated at the present time. A platform should 491 * re-initialize the map in the platforms smp_prepare_cpus() 492 * if present != possible (e.g. physical hotplug). 493 */ 494 init_cpu_present(cpu_possible_mask); 495 496 /* 497 * Initialise the SCU if there are more than one CPU 498 * and let them know where to start. 499 */ 500 if (smp_ops.smp_prepare_cpus) 501 smp_ops.smp_prepare_cpus(max_cpus); 502 } 503 } 504 505 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 506 507 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 508 { 509 if (!__smp_cross_call) 510 __smp_cross_call = fn; 511 } 512 513 static const char *ipi_types[NR_IPI] __tracepoint_string = { 514 #define S(x,s) [x] = s 515 S(IPI_WAKEUP, "CPU wakeup interrupts"), 516 S(IPI_TIMER, "Timer broadcast interrupts"), 517 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 518 S(IPI_CALL_FUNC, "Function call interrupts"), 519 S(IPI_CPU_STOP, "CPU stop interrupts"), 520 S(IPI_IRQ_WORK, "IRQ work interrupts"), 521 S(IPI_COMPLETION, "completion interrupts"), 522 }; 523 524 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 525 { 526 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 527 __smp_cross_call(target, ipinr); 528 } 529 530 void show_ipi_list(struct seq_file *p, int prec) 531 { 532 unsigned int cpu, i; 533 534 for (i = 0; i < NR_IPI; i++) { 535 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 536 537 for_each_online_cpu(cpu) 538 seq_printf(p, "%10u ", 539 __get_irq_stat(cpu, ipi_irqs[i])); 540 541 seq_printf(p, " %s\n", ipi_types[i]); 542 } 543 } 544 545 u64 smp_irq_stat_cpu(unsigned int cpu) 546 { 547 u64 sum = 0; 548 int i; 549 550 for (i = 0; i < NR_IPI; i++) 551 sum += __get_irq_stat(cpu, ipi_irqs[i]); 552 553 return sum; 554 } 555 556 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 557 { 558 smp_cross_call(mask, IPI_CALL_FUNC); 559 } 560 561 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 562 { 563 smp_cross_call(mask, IPI_WAKEUP); 564 } 565 566 void arch_send_call_function_single_ipi(int cpu) 567 { 568 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 569 } 570 571 #ifdef CONFIG_IRQ_WORK 572 void arch_irq_work_raise(void) 573 { 574 if (arch_irq_work_has_interrupt()) 575 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 576 } 577 #endif 578 579 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 580 void tick_broadcast(const struct cpumask *mask) 581 { 582 smp_cross_call(mask, IPI_TIMER); 583 } 584 #endif 585 586 static DEFINE_RAW_SPINLOCK(stop_lock); 587 588 /* 589 * ipi_cpu_stop - handle IPI from smp_send_stop() 590 */ 591 static void ipi_cpu_stop(unsigned int cpu) 592 { 593 if (system_state <= SYSTEM_RUNNING) { 594 raw_spin_lock(&stop_lock); 595 pr_crit("CPU%u: stopping\n", cpu); 596 dump_stack(); 597 raw_spin_unlock(&stop_lock); 598 } 599 600 set_cpu_online(cpu, false); 601 602 local_fiq_disable(); 603 local_irq_disable(); 604 605 while (1) { 606 cpu_relax(); 607 wfe(); 608 } 609 } 610 611 static DEFINE_PER_CPU(struct completion *, cpu_completion); 612 613 int register_ipi_completion(struct completion *completion, int cpu) 614 { 615 per_cpu(cpu_completion, cpu) = completion; 616 return IPI_COMPLETION; 617 } 618 619 static void ipi_complete(unsigned int cpu) 620 { 621 complete(per_cpu(cpu_completion, cpu)); 622 } 623 624 /* 625 * Main handler for inter-processor interrupts 626 */ 627 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 628 { 629 handle_IPI(ipinr, regs); 630 } 631 632 void handle_IPI(int ipinr, struct pt_regs *regs) 633 { 634 unsigned int cpu = smp_processor_id(); 635 struct pt_regs *old_regs = set_irq_regs(regs); 636 637 if ((unsigned)ipinr < NR_IPI) { 638 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 639 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 640 } 641 642 switch (ipinr) { 643 case IPI_WAKEUP: 644 break; 645 646 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 647 case IPI_TIMER: 648 irq_enter(); 649 tick_receive_broadcast(); 650 irq_exit(); 651 break; 652 #endif 653 654 case IPI_RESCHEDULE: 655 scheduler_ipi(); 656 break; 657 658 case IPI_CALL_FUNC: 659 irq_enter(); 660 generic_smp_call_function_interrupt(); 661 irq_exit(); 662 break; 663 664 case IPI_CPU_STOP: 665 irq_enter(); 666 ipi_cpu_stop(cpu); 667 irq_exit(); 668 break; 669 670 #ifdef CONFIG_IRQ_WORK 671 case IPI_IRQ_WORK: 672 irq_enter(); 673 irq_work_run(); 674 irq_exit(); 675 break; 676 #endif 677 678 case IPI_COMPLETION: 679 irq_enter(); 680 ipi_complete(cpu); 681 irq_exit(); 682 break; 683 684 case IPI_CPU_BACKTRACE: 685 printk_nmi_enter(); 686 irq_enter(); 687 nmi_cpu_backtrace(regs); 688 irq_exit(); 689 printk_nmi_exit(); 690 break; 691 692 default: 693 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 694 cpu, ipinr); 695 break; 696 } 697 698 if ((unsigned)ipinr < NR_IPI) 699 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 700 set_irq_regs(old_regs); 701 } 702 703 void smp_send_reschedule(int cpu) 704 { 705 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 706 } 707 708 void smp_send_stop(void) 709 { 710 unsigned long timeout; 711 struct cpumask mask; 712 713 cpumask_copy(&mask, cpu_online_mask); 714 cpumask_clear_cpu(smp_processor_id(), &mask); 715 if (!cpumask_empty(&mask)) 716 smp_cross_call(&mask, IPI_CPU_STOP); 717 718 /* Wait up to one second for other CPUs to stop */ 719 timeout = USEC_PER_SEC; 720 while (num_online_cpus() > 1 && timeout--) 721 udelay(1); 722 723 if (num_online_cpus() > 1) 724 pr_warn("SMP: failed to stop secondary CPUs\n"); 725 } 726 727 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 728 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 729 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 730 * kdump fails. So split out the panic_smp_self_stop() and add 731 * set_cpu_online(smp_processor_id(), false). 732 */ 733 void panic_smp_self_stop(void) 734 { 735 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 736 smp_processor_id()); 737 set_cpu_online(smp_processor_id(), false); 738 while (1) 739 cpu_relax(); 740 } 741 742 /* 743 * not supported here 744 */ 745 int setup_profiling_timer(unsigned int multiplier) 746 { 747 return -EINVAL; 748 } 749 750 #ifdef CONFIG_CPU_FREQ 751 752 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 754 static unsigned long global_l_p_j_ref; 755 static unsigned long global_l_p_j_ref_freq; 756 757 static int cpufreq_callback(struct notifier_block *nb, 758 unsigned long val, void *data) 759 { 760 struct cpufreq_freqs *freq = data; 761 struct cpumask *cpus = freq->policy->cpus; 762 int cpu, first = cpumask_first(cpus); 763 unsigned int lpj; 764 765 if (freq->flags & CPUFREQ_CONST_LOOPS) 766 return NOTIFY_OK; 767 768 if (!per_cpu(l_p_j_ref, first)) { 769 for_each_cpu(cpu, cpus) { 770 per_cpu(l_p_j_ref, cpu) = 771 per_cpu(cpu_data, cpu).loops_per_jiffy; 772 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 773 } 774 775 if (!global_l_p_j_ref) { 776 global_l_p_j_ref = loops_per_jiffy; 777 global_l_p_j_ref_freq = freq->old; 778 } 779 } 780 781 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 782 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 783 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 784 global_l_p_j_ref_freq, 785 freq->new); 786 787 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 788 per_cpu(l_p_j_ref_freq, first), freq->new); 789 for_each_cpu(cpu, cpus) 790 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 791 } 792 return NOTIFY_OK; 793 } 794 795 static struct notifier_block cpufreq_notifier = { 796 .notifier_call = cpufreq_callback, 797 }; 798 799 static int __init register_cpufreq_notifier(void) 800 { 801 return cpufreq_register_notifier(&cpufreq_notifier, 802 CPUFREQ_TRANSITION_NOTIFIER); 803 } 804 core_initcall(register_cpufreq_notifier); 805 806 #endif 807 808 static void raise_nmi(cpumask_t *mask) 809 { 810 __smp_cross_call(mask, IPI_CPU_BACKTRACE); 811 } 812 813 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 814 { 815 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 816 } 817