xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 9b799b78)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52 
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59 
60 /*
61  * control for which core is the next to come out of the secondary
62  * boot "holding pen"
63  */
64 volatile int pen_release = -1;
65 
66 enum ipi_msg_type {
67 	IPI_WAKEUP,
68 	IPI_TIMER,
69 	IPI_RESCHEDULE,
70 	IPI_CALL_FUNC,
71 	IPI_CALL_FUNC_SINGLE,
72 	IPI_CPU_STOP,
73 	IPI_IRQ_WORK,
74 	IPI_COMPLETION,
75 };
76 
77 static DECLARE_COMPLETION(cpu_running);
78 
79 static struct smp_operations smp_ops;
80 
81 void __init smp_set_ops(struct smp_operations *ops)
82 {
83 	if (ops)
84 		smp_ops = *ops;
85 };
86 
87 static unsigned long get_arch_pgd(pgd_t *pgd)
88 {
89 	phys_addr_t pgdir = virt_to_idmap(pgd);
90 	BUG_ON(pgdir & ARCH_PGD_MASK);
91 	return pgdir >> ARCH_PGD_SHIFT;
92 }
93 
94 int __cpu_up(unsigned int cpu, struct task_struct *idle)
95 {
96 	int ret;
97 
98 	if (!smp_ops.smp_boot_secondary)
99 		return -ENOSYS;
100 
101 	/*
102 	 * We need to tell the secondary core where to find
103 	 * its stack and the page tables.
104 	 */
105 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
106 #ifdef CONFIG_ARM_MPU
107 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
108 #endif
109 
110 #ifdef CONFIG_MMU
111 	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
112 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
113 #endif
114 	sync_cache_w(&secondary_data);
115 
116 	/*
117 	 * Now bring the CPU into our world.
118 	 */
119 	ret = smp_ops.smp_boot_secondary(cpu, idle);
120 	if (ret == 0) {
121 		/*
122 		 * CPU was successfully started, wait for it
123 		 * to come online or time out.
124 		 */
125 		wait_for_completion_timeout(&cpu_running,
126 						 msecs_to_jiffies(1000));
127 
128 		if (!cpu_online(cpu)) {
129 			pr_crit("CPU%u: failed to come online\n", cpu);
130 			ret = -EIO;
131 		}
132 	} else {
133 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 	}
135 
136 
137 	memset(&secondary_data, 0, sizeof(secondary_data));
138 	return ret;
139 }
140 
141 /* platform specific SMP operations */
142 void __init smp_init_cpus(void)
143 {
144 	if (smp_ops.smp_init_cpus)
145 		smp_ops.smp_init_cpus();
146 }
147 
148 int platform_can_secondary_boot(void)
149 {
150 	return !!smp_ops.smp_boot_secondary;
151 }
152 
153 int platform_can_cpu_hotplug(void)
154 {
155 #ifdef CONFIG_HOTPLUG_CPU
156 	if (smp_ops.cpu_kill)
157 		return 1;
158 #endif
159 
160 	return 0;
161 }
162 
163 #ifdef CONFIG_HOTPLUG_CPU
164 static int platform_cpu_kill(unsigned int cpu)
165 {
166 	if (smp_ops.cpu_kill)
167 		return smp_ops.cpu_kill(cpu);
168 	return 1;
169 }
170 
171 static int platform_cpu_disable(unsigned int cpu)
172 {
173 	if (smp_ops.cpu_disable)
174 		return smp_ops.cpu_disable(cpu);
175 
176 	/*
177 	 * By default, allow disabling all CPUs except the first one,
178 	 * since this is special on a lot of platforms, e.g. because
179 	 * of clock tick interrupts.
180 	 */
181 	return cpu == 0 ? -EPERM : 0;
182 }
183 /*
184  * __cpu_disable runs on the processor to be shutdown.
185  */
186 int __cpu_disable(void)
187 {
188 	unsigned int cpu = smp_processor_id();
189 	int ret;
190 
191 	ret = platform_cpu_disable(cpu);
192 	if (ret)
193 		return ret;
194 
195 	/*
196 	 * Take this CPU offline.  Once we clear this, we can't return,
197 	 * and we must not schedule until we're ready to give up the cpu.
198 	 */
199 	set_cpu_online(cpu, false);
200 
201 	/*
202 	 * OK - migrate IRQs away from this CPU
203 	 */
204 	migrate_irqs();
205 
206 	/*
207 	 * Flush user cache and TLB mappings, and then remove this CPU
208 	 * from the vm mask set of all processes.
209 	 *
210 	 * Caches are flushed to the Level of Unification Inner Shareable
211 	 * to write-back dirty lines to unified caches shared by all CPUs.
212 	 */
213 	flush_cache_louis();
214 	local_flush_tlb_all();
215 
216 	clear_tasks_mm_cpumask(cpu);
217 
218 	return 0;
219 }
220 
221 static DECLARE_COMPLETION(cpu_died);
222 
223 /*
224  * called on the thread which is asking for a CPU to be shutdown -
225  * waits until shutdown has completed, or it is timed out.
226  */
227 void __cpu_die(unsigned int cpu)
228 {
229 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
230 		pr_err("CPU%u: cpu didn't die\n", cpu);
231 		return;
232 	}
233 	pr_notice("CPU%u: shutdown\n", cpu);
234 
235 	/*
236 	 * platform_cpu_kill() is generally expected to do the powering off
237 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
238 	 * be done by the CPU which is dying in preference to supporting
239 	 * this call, but that means there is _no_ synchronisation between
240 	 * the requesting CPU and the dying CPU actually losing power.
241 	 */
242 	if (!platform_cpu_kill(cpu))
243 		pr_err("CPU%u: unable to kill\n", cpu);
244 }
245 
246 /*
247  * Called from the idle thread for the CPU which has been shutdown.
248  *
249  * Note that we disable IRQs here, but do not re-enable them
250  * before returning to the caller. This is also the behaviour
251  * of the other hotplug-cpu capable cores, so presumably coming
252  * out of idle fixes this.
253  */
254 void __ref cpu_die(void)
255 {
256 	unsigned int cpu = smp_processor_id();
257 
258 	idle_task_exit();
259 
260 	local_irq_disable();
261 
262 	/*
263 	 * Flush the data out of the L1 cache for this CPU.  This must be
264 	 * before the completion to ensure that data is safely written out
265 	 * before platform_cpu_kill() gets called - which may disable
266 	 * *this* CPU and power down its cache.
267 	 */
268 	flush_cache_louis();
269 
270 	/*
271 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
272 	 * this returns, power and/or clocks can be removed at any point
273 	 * from this CPU and its cache by platform_cpu_kill().
274 	 */
275 	complete(&cpu_died);
276 
277 	/*
278 	 * Ensure that the cache lines associated with that completion are
279 	 * written out.  This covers the case where _this_ CPU is doing the
280 	 * powering down, to ensure that the completion is visible to the
281 	 * CPU waiting for this one.
282 	 */
283 	flush_cache_louis();
284 
285 	/*
286 	 * The actual CPU shutdown procedure is at least platform (if not
287 	 * CPU) specific.  This may remove power, or it may simply spin.
288 	 *
289 	 * Platforms are generally expected *NOT* to return from this call,
290 	 * although there are some which do because they have no way to
291 	 * power down the CPU.  These platforms are the _only_ reason we
292 	 * have a return path which uses the fragment of assembly below.
293 	 *
294 	 * The return path should not be used for platforms which can
295 	 * power off the CPU.
296 	 */
297 	if (smp_ops.cpu_die)
298 		smp_ops.cpu_die(cpu);
299 
300 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
301 		cpu);
302 
303 	/*
304 	 * Do not return to the idle loop - jump back to the secondary
305 	 * cpu initialisation.  There's some initialisation which needs
306 	 * to be repeated to undo the effects of taking the CPU offline.
307 	 */
308 	__asm__("mov	sp, %0\n"
309 	"	mov	fp, #0\n"
310 	"	b	secondary_start_kernel"
311 		:
312 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
313 }
314 #endif /* CONFIG_HOTPLUG_CPU */
315 
316 /*
317  * Called by both boot and secondaries to move global data into
318  * per-processor storage.
319  */
320 static void smp_store_cpu_info(unsigned int cpuid)
321 {
322 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
323 
324 	cpu_info->loops_per_jiffy = loops_per_jiffy;
325 	cpu_info->cpuid = read_cpuid_id();
326 
327 	store_cpu_topology(cpuid);
328 }
329 
330 /*
331  * This is the secondary CPU boot entry.  We're using this CPUs
332  * idle thread stack, but a set of temporary page tables.
333  */
334 asmlinkage void secondary_start_kernel(void)
335 {
336 	struct mm_struct *mm = &init_mm;
337 	unsigned int cpu;
338 
339 	/*
340 	 * The identity mapping is uncached (strongly ordered), so
341 	 * switch away from it before attempting any exclusive accesses.
342 	 */
343 	cpu_switch_mm(mm->pgd, mm);
344 	local_flush_bp_all();
345 	enter_lazy_tlb(mm, current);
346 	local_flush_tlb_all();
347 
348 	/*
349 	 * All kernel threads share the same mm context; grab a
350 	 * reference and switch to it.
351 	 */
352 	cpu = smp_processor_id();
353 	atomic_inc(&mm->mm_count);
354 	current->active_mm = mm;
355 	cpumask_set_cpu(cpu, mm_cpumask(mm));
356 
357 	cpu_init();
358 
359 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
360 
361 	preempt_disable();
362 	trace_hardirqs_off();
363 
364 	/*
365 	 * Give the platform a chance to do its own initialisation.
366 	 */
367 	if (smp_ops.smp_secondary_init)
368 		smp_ops.smp_secondary_init(cpu);
369 
370 	notify_cpu_starting(cpu);
371 
372 	calibrate_delay();
373 
374 	smp_store_cpu_info(cpu);
375 
376 	/*
377 	 * OK, now it's safe to let the boot CPU continue.  Wait for
378 	 * the CPU migration code to notice that the CPU is online
379 	 * before we continue - which happens after __cpu_up returns.
380 	 */
381 	set_cpu_online(cpu, true);
382 	complete(&cpu_running);
383 
384 	local_irq_enable();
385 	local_fiq_enable();
386 
387 	/*
388 	 * OK, it's off to the idle thread for us
389 	 */
390 	cpu_startup_entry(CPUHP_ONLINE);
391 }
392 
393 void __init smp_cpus_done(unsigned int max_cpus)
394 {
395 	int cpu;
396 	unsigned long bogosum = 0;
397 
398 	for_each_online_cpu(cpu)
399 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
400 
401 	printk(KERN_INFO "SMP: Total of %d processors activated "
402 	       "(%lu.%02lu BogoMIPS).\n",
403 	       num_online_cpus(),
404 	       bogosum / (500000/HZ),
405 	       (bogosum / (5000/HZ)) % 100);
406 
407 	hyp_mode_check();
408 }
409 
410 void __init smp_prepare_boot_cpu(void)
411 {
412 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
413 }
414 
415 void __init smp_prepare_cpus(unsigned int max_cpus)
416 {
417 	unsigned int ncores = num_possible_cpus();
418 
419 	init_cpu_topology();
420 
421 	smp_store_cpu_info(smp_processor_id());
422 
423 	/*
424 	 * are we trying to boot more cores than exist?
425 	 */
426 	if (max_cpus > ncores)
427 		max_cpus = ncores;
428 	if (ncores > 1 && max_cpus) {
429 		/*
430 		 * Initialise the present map, which describes the set of CPUs
431 		 * actually populated at the present time. A platform should
432 		 * re-initialize the map in the platforms smp_prepare_cpus()
433 		 * if present != possible (e.g. physical hotplug).
434 		 */
435 		init_cpu_present(cpu_possible_mask);
436 
437 		/*
438 		 * Initialise the SCU if there are more than one CPU
439 		 * and let them know where to start.
440 		 */
441 		if (smp_ops.smp_prepare_cpus)
442 			smp_ops.smp_prepare_cpus(max_cpus);
443 	}
444 }
445 
446 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
447 
448 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
449 {
450 	if (!__smp_cross_call)
451 		__smp_cross_call = fn;
452 }
453 
454 static const char *ipi_types[NR_IPI] __tracepoint_string = {
455 #define S(x,s)	[x] = s
456 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
457 	S(IPI_TIMER, "Timer broadcast interrupts"),
458 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
459 	S(IPI_CALL_FUNC, "Function call interrupts"),
460 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
461 	S(IPI_CPU_STOP, "CPU stop interrupts"),
462 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
463 	S(IPI_COMPLETION, "completion interrupts"),
464 };
465 
466 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
467 {
468 	trace_ipi_raise(target, ipi_types[ipinr]);
469 	__smp_cross_call(target, ipinr);
470 }
471 
472 void show_ipi_list(struct seq_file *p, int prec)
473 {
474 	unsigned int cpu, i;
475 
476 	for (i = 0; i < NR_IPI; i++) {
477 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
478 
479 		for_each_online_cpu(cpu)
480 			seq_printf(p, "%10u ",
481 				   __get_irq_stat(cpu, ipi_irqs[i]));
482 
483 		seq_printf(p, " %s\n", ipi_types[i]);
484 	}
485 }
486 
487 u64 smp_irq_stat_cpu(unsigned int cpu)
488 {
489 	u64 sum = 0;
490 	int i;
491 
492 	for (i = 0; i < NR_IPI; i++)
493 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
494 
495 	return sum;
496 }
497 
498 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
499 {
500 	smp_cross_call(mask, IPI_CALL_FUNC);
501 }
502 
503 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
504 {
505 	smp_cross_call(mask, IPI_WAKEUP);
506 }
507 
508 void arch_send_call_function_single_ipi(int cpu)
509 {
510 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
511 }
512 
513 #ifdef CONFIG_IRQ_WORK
514 void arch_irq_work_raise(void)
515 {
516 	if (arch_irq_work_has_interrupt())
517 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
518 }
519 #endif
520 
521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
522 void tick_broadcast(const struct cpumask *mask)
523 {
524 	smp_cross_call(mask, IPI_TIMER);
525 }
526 #endif
527 
528 static DEFINE_RAW_SPINLOCK(stop_lock);
529 
530 /*
531  * ipi_cpu_stop - handle IPI from smp_send_stop()
532  */
533 static void ipi_cpu_stop(unsigned int cpu)
534 {
535 	if (system_state == SYSTEM_BOOTING ||
536 	    system_state == SYSTEM_RUNNING) {
537 		raw_spin_lock(&stop_lock);
538 		pr_crit("CPU%u: stopping\n", cpu);
539 		dump_stack();
540 		raw_spin_unlock(&stop_lock);
541 	}
542 
543 	set_cpu_online(cpu, false);
544 
545 	local_fiq_disable();
546 	local_irq_disable();
547 
548 	while (1)
549 		cpu_relax();
550 }
551 
552 static DEFINE_PER_CPU(struct completion *, cpu_completion);
553 
554 int register_ipi_completion(struct completion *completion, int cpu)
555 {
556 	per_cpu(cpu_completion, cpu) = completion;
557 	return IPI_COMPLETION;
558 }
559 
560 static void ipi_complete(unsigned int cpu)
561 {
562 	complete(per_cpu(cpu_completion, cpu));
563 }
564 
565 /*
566  * Main handler for inter-processor interrupts
567  */
568 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569 {
570 	handle_IPI(ipinr, regs);
571 }
572 
573 void handle_IPI(int ipinr, struct pt_regs *regs)
574 {
575 	unsigned int cpu = smp_processor_id();
576 	struct pt_regs *old_regs = set_irq_regs(regs);
577 
578 	if ((unsigned)ipinr < NR_IPI) {
579 		trace_ipi_entry(ipi_types[ipinr]);
580 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
581 	}
582 
583 	switch (ipinr) {
584 	case IPI_WAKEUP:
585 		break;
586 
587 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
588 	case IPI_TIMER:
589 		irq_enter();
590 		tick_receive_broadcast();
591 		irq_exit();
592 		break;
593 #endif
594 
595 	case IPI_RESCHEDULE:
596 		scheduler_ipi();
597 		break;
598 
599 	case IPI_CALL_FUNC:
600 		irq_enter();
601 		generic_smp_call_function_interrupt();
602 		irq_exit();
603 		break;
604 
605 	case IPI_CALL_FUNC_SINGLE:
606 		irq_enter();
607 		generic_smp_call_function_single_interrupt();
608 		irq_exit();
609 		break;
610 
611 	case IPI_CPU_STOP:
612 		irq_enter();
613 		ipi_cpu_stop(cpu);
614 		irq_exit();
615 		break;
616 
617 #ifdef CONFIG_IRQ_WORK
618 	case IPI_IRQ_WORK:
619 		irq_enter();
620 		irq_work_run();
621 		irq_exit();
622 		break;
623 #endif
624 
625 	case IPI_COMPLETION:
626 		irq_enter();
627 		ipi_complete(cpu);
628 		irq_exit();
629 		break;
630 
631 	default:
632 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
633 		        cpu, ipinr);
634 		break;
635 	}
636 
637 	if ((unsigned)ipinr < NR_IPI)
638 		trace_ipi_exit(ipi_types[ipinr]);
639 	set_irq_regs(old_regs);
640 }
641 
642 void smp_send_reschedule(int cpu)
643 {
644 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
645 }
646 
647 void smp_send_stop(void)
648 {
649 	unsigned long timeout;
650 	struct cpumask mask;
651 
652 	cpumask_copy(&mask, cpu_online_mask);
653 	cpumask_clear_cpu(smp_processor_id(), &mask);
654 	if (!cpumask_empty(&mask))
655 		smp_cross_call(&mask, IPI_CPU_STOP);
656 
657 	/* Wait up to one second for other CPUs to stop */
658 	timeout = USEC_PER_SEC;
659 	while (num_online_cpus() > 1 && timeout--)
660 		udelay(1);
661 
662 	if (num_online_cpus() > 1)
663 		pr_warn("SMP: failed to stop secondary CPUs\n");
664 }
665 
666 /*
667  * not supported here
668  */
669 int setup_profiling_timer(unsigned int multiplier)
670 {
671 	return -EINVAL;
672 }
673 
674 #ifdef CONFIG_CPU_FREQ
675 
676 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
677 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
678 static unsigned long global_l_p_j_ref;
679 static unsigned long global_l_p_j_ref_freq;
680 
681 static int cpufreq_callback(struct notifier_block *nb,
682 					unsigned long val, void *data)
683 {
684 	struct cpufreq_freqs *freq = data;
685 	int cpu = freq->cpu;
686 
687 	if (freq->flags & CPUFREQ_CONST_LOOPS)
688 		return NOTIFY_OK;
689 
690 	if (!per_cpu(l_p_j_ref, cpu)) {
691 		per_cpu(l_p_j_ref, cpu) =
692 			per_cpu(cpu_data, cpu).loops_per_jiffy;
693 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
694 		if (!global_l_p_j_ref) {
695 			global_l_p_j_ref = loops_per_jiffy;
696 			global_l_p_j_ref_freq = freq->old;
697 		}
698 	}
699 
700 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
701 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
702 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
703 						global_l_p_j_ref_freq,
704 						freq->new);
705 		per_cpu(cpu_data, cpu).loops_per_jiffy =
706 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
707 					per_cpu(l_p_j_ref_freq, cpu),
708 					freq->new);
709 	}
710 	return NOTIFY_OK;
711 }
712 
713 static struct notifier_block cpufreq_notifier = {
714 	.notifier_call  = cpufreq_callback,
715 };
716 
717 static int __init register_cpufreq_notifier(void)
718 {
719 	return cpufreq_register_notifier(&cpufreq_notifier,
720 						CPUFREQ_TRANSITION_NOTIFIER);
721 }
722 core_initcall(register_cpufreq_notifier);
723 
724 #endif
725