1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/smp.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpu.h> 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/idmap.h> 37 #include <asm/topology.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 /* 51 * as from 2.5, kernels no longer have an init_tasks structure 52 * so we need some other way of telling a new secondary core 53 * where to place its SVC stack 54 */ 55 struct secondary_data secondary_data; 56 57 /* 58 * control for which core is the next to come out of the secondary 59 * boot "holding pen" 60 */ 61 volatile int pen_release = -1; 62 63 enum ipi_msg_type { 64 IPI_WAKEUP, 65 IPI_TIMER, 66 IPI_RESCHEDULE, 67 IPI_CALL_FUNC, 68 IPI_CALL_FUNC_SINGLE, 69 IPI_CPU_STOP, 70 IPI_IRQ_WORK, 71 IPI_COMPLETION, 72 }; 73 74 static DECLARE_COMPLETION(cpu_running); 75 76 static struct smp_operations smp_ops; 77 78 void __init smp_set_ops(struct smp_operations *ops) 79 { 80 if (ops) 81 smp_ops = *ops; 82 }; 83 84 static unsigned long get_arch_pgd(pgd_t *pgd) 85 { 86 phys_addr_t pgdir = virt_to_idmap(pgd); 87 BUG_ON(pgdir & ARCH_PGD_MASK); 88 return pgdir >> ARCH_PGD_SHIFT; 89 } 90 91 int __cpu_up(unsigned int cpu, struct task_struct *idle) 92 { 93 int ret; 94 95 /* 96 * We need to tell the secondary core where to find 97 * its stack and the page tables. 98 */ 99 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 100 #ifdef CONFIG_ARM_MPU 101 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 102 #endif 103 104 #ifdef CONFIG_MMU 105 secondary_data.pgdir = get_arch_pgd(idmap_pgd); 106 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 107 #endif 108 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data)); 109 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1)); 110 111 /* 112 * Now bring the CPU into our world. 113 */ 114 ret = boot_secondary(cpu, idle); 115 if (ret == 0) { 116 /* 117 * CPU was successfully started, wait for it 118 * to come online or time out. 119 */ 120 wait_for_completion_timeout(&cpu_running, 121 msecs_to_jiffies(1000)); 122 123 if (!cpu_online(cpu)) { 124 pr_crit("CPU%u: failed to come online\n", cpu); 125 ret = -EIO; 126 } 127 } else { 128 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 129 } 130 131 132 memset(&secondary_data, 0, sizeof(secondary_data)); 133 return ret; 134 } 135 136 /* platform specific SMP operations */ 137 void __init smp_init_cpus(void) 138 { 139 if (smp_ops.smp_init_cpus) 140 smp_ops.smp_init_cpus(); 141 } 142 143 int boot_secondary(unsigned int cpu, struct task_struct *idle) 144 { 145 if (smp_ops.smp_boot_secondary) 146 return smp_ops.smp_boot_secondary(cpu, idle); 147 return -ENOSYS; 148 } 149 150 int platform_can_cpu_hotplug(void) 151 { 152 #ifdef CONFIG_HOTPLUG_CPU 153 if (smp_ops.cpu_kill) 154 return 1; 155 #endif 156 157 return 0; 158 } 159 160 #ifdef CONFIG_HOTPLUG_CPU 161 static int platform_cpu_kill(unsigned int cpu) 162 { 163 if (smp_ops.cpu_kill) 164 return smp_ops.cpu_kill(cpu); 165 return 1; 166 } 167 168 static int platform_cpu_disable(unsigned int cpu) 169 { 170 if (smp_ops.cpu_disable) 171 return smp_ops.cpu_disable(cpu); 172 173 /* 174 * By default, allow disabling all CPUs except the first one, 175 * since this is special on a lot of platforms, e.g. because 176 * of clock tick interrupts. 177 */ 178 return cpu == 0 ? -EPERM : 0; 179 } 180 /* 181 * __cpu_disable runs on the processor to be shutdown. 182 */ 183 int __cpu_disable(void) 184 { 185 unsigned int cpu = smp_processor_id(); 186 int ret; 187 188 ret = platform_cpu_disable(cpu); 189 if (ret) 190 return ret; 191 192 /* 193 * Take this CPU offline. Once we clear this, we can't return, 194 * and we must not schedule until we're ready to give up the cpu. 195 */ 196 set_cpu_online(cpu, false); 197 198 /* 199 * OK - migrate IRQs away from this CPU 200 */ 201 migrate_irqs(); 202 203 /* 204 * Flush user cache and TLB mappings, and then remove this CPU 205 * from the vm mask set of all processes. 206 * 207 * Caches are flushed to the Level of Unification Inner Shareable 208 * to write-back dirty lines to unified caches shared by all CPUs. 209 */ 210 flush_cache_louis(); 211 local_flush_tlb_all(); 212 213 clear_tasks_mm_cpumask(cpu); 214 215 return 0; 216 } 217 218 static DECLARE_COMPLETION(cpu_died); 219 220 /* 221 * called on the thread which is asking for a CPU to be shutdown - 222 * waits until shutdown has completed, or it is timed out. 223 */ 224 void __cpu_die(unsigned int cpu) 225 { 226 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 227 pr_err("CPU%u: cpu didn't die\n", cpu); 228 return; 229 } 230 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 231 232 /* 233 * platform_cpu_kill() is generally expected to do the powering off 234 * and/or cutting of clocks to the dying CPU. Optionally, this may 235 * be done by the CPU which is dying in preference to supporting 236 * this call, but that means there is _no_ synchronisation between 237 * the requesting CPU and the dying CPU actually losing power. 238 */ 239 if (!platform_cpu_kill(cpu)) 240 printk("CPU%u: unable to kill\n", cpu); 241 } 242 243 /* 244 * Called from the idle thread for the CPU which has been shutdown. 245 * 246 * Note that we disable IRQs here, but do not re-enable them 247 * before returning to the caller. This is also the behaviour 248 * of the other hotplug-cpu capable cores, so presumably coming 249 * out of idle fixes this. 250 */ 251 void __ref cpu_die(void) 252 { 253 unsigned int cpu = smp_processor_id(); 254 255 idle_task_exit(); 256 257 local_irq_disable(); 258 259 /* 260 * Flush the data out of the L1 cache for this CPU. This must be 261 * before the completion to ensure that data is safely written out 262 * before platform_cpu_kill() gets called - which may disable 263 * *this* CPU and power down its cache. 264 */ 265 flush_cache_louis(); 266 267 /* 268 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 269 * this returns, power and/or clocks can be removed at any point 270 * from this CPU and its cache by platform_cpu_kill(). 271 */ 272 complete(&cpu_died); 273 274 /* 275 * Ensure that the cache lines associated with that completion are 276 * written out. This covers the case where _this_ CPU is doing the 277 * powering down, to ensure that the completion is visible to the 278 * CPU waiting for this one. 279 */ 280 flush_cache_louis(); 281 282 /* 283 * The actual CPU shutdown procedure is at least platform (if not 284 * CPU) specific. This may remove power, or it may simply spin. 285 * 286 * Platforms are generally expected *NOT* to return from this call, 287 * although there are some which do because they have no way to 288 * power down the CPU. These platforms are the _only_ reason we 289 * have a return path which uses the fragment of assembly below. 290 * 291 * The return path should not be used for platforms which can 292 * power off the CPU. 293 */ 294 if (smp_ops.cpu_die) 295 smp_ops.cpu_die(cpu); 296 297 /* 298 * Do not return to the idle loop - jump back to the secondary 299 * cpu initialisation. There's some initialisation which needs 300 * to be repeated to undo the effects of taking the CPU offline. 301 */ 302 __asm__("mov sp, %0\n" 303 " mov fp, #0\n" 304 " b secondary_start_kernel" 305 : 306 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 307 } 308 #endif /* CONFIG_HOTPLUG_CPU */ 309 310 /* 311 * Called by both boot and secondaries to move global data into 312 * per-processor storage. 313 */ 314 static void smp_store_cpu_info(unsigned int cpuid) 315 { 316 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 317 318 cpu_info->loops_per_jiffy = loops_per_jiffy; 319 cpu_info->cpuid = read_cpuid_id(); 320 321 store_cpu_topology(cpuid); 322 } 323 324 /* 325 * This is the secondary CPU boot entry. We're using this CPUs 326 * idle thread stack, but a set of temporary page tables. 327 */ 328 asmlinkage void secondary_start_kernel(void) 329 { 330 struct mm_struct *mm = &init_mm; 331 unsigned int cpu; 332 333 /* 334 * The identity mapping is uncached (strongly ordered), so 335 * switch away from it before attempting any exclusive accesses. 336 */ 337 cpu_switch_mm(mm->pgd, mm); 338 local_flush_bp_all(); 339 enter_lazy_tlb(mm, current); 340 local_flush_tlb_all(); 341 342 /* 343 * All kernel threads share the same mm context; grab a 344 * reference and switch to it. 345 */ 346 cpu = smp_processor_id(); 347 atomic_inc(&mm->mm_count); 348 current->active_mm = mm; 349 cpumask_set_cpu(cpu, mm_cpumask(mm)); 350 351 cpu_init(); 352 353 printk("CPU%u: Booted secondary processor\n", cpu); 354 355 preempt_disable(); 356 trace_hardirqs_off(); 357 358 /* 359 * Give the platform a chance to do its own initialisation. 360 */ 361 if (smp_ops.smp_secondary_init) 362 smp_ops.smp_secondary_init(cpu); 363 364 notify_cpu_starting(cpu); 365 366 calibrate_delay(); 367 368 smp_store_cpu_info(cpu); 369 370 /* 371 * OK, now it's safe to let the boot CPU continue. Wait for 372 * the CPU migration code to notice that the CPU is online 373 * before we continue - which happens after __cpu_up returns. 374 */ 375 set_cpu_online(cpu, true); 376 complete(&cpu_running); 377 378 local_irq_enable(); 379 local_fiq_enable(); 380 381 /* 382 * OK, it's off to the idle thread for us 383 */ 384 cpu_startup_entry(CPUHP_ONLINE); 385 } 386 387 void __init smp_cpus_done(unsigned int max_cpus) 388 { 389 printk(KERN_INFO "SMP: Total of %d processors activated.\n", 390 num_online_cpus()); 391 392 hyp_mode_check(); 393 } 394 395 void __init smp_prepare_boot_cpu(void) 396 { 397 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 398 } 399 400 void __init smp_prepare_cpus(unsigned int max_cpus) 401 { 402 unsigned int ncores = num_possible_cpus(); 403 404 init_cpu_topology(); 405 406 smp_store_cpu_info(smp_processor_id()); 407 408 /* 409 * are we trying to boot more cores than exist? 410 */ 411 if (max_cpus > ncores) 412 max_cpus = ncores; 413 if (ncores > 1 && max_cpus) { 414 /* 415 * Initialise the present map, which describes the set of CPUs 416 * actually populated at the present time. A platform should 417 * re-initialize the map in the platforms smp_prepare_cpus() 418 * if present != possible (e.g. physical hotplug). 419 */ 420 init_cpu_present(cpu_possible_mask); 421 422 /* 423 * Initialise the SCU if there are more than one CPU 424 * and let them know where to start. 425 */ 426 if (smp_ops.smp_prepare_cpus) 427 smp_ops.smp_prepare_cpus(max_cpus); 428 } 429 } 430 431 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 432 433 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 434 { 435 if (!smp_cross_call) 436 smp_cross_call = fn; 437 } 438 439 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 440 { 441 smp_cross_call(mask, IPI_CALL_FUNC); 442 } 443 444 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 445 { 446 smp_cross_call(mask, IPI_WAKEUP); 447 } 448 449 void arch_send_call_function_single_ipi(int cpu) 450 { 451 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 452 } 453 454 #ifdef CONFIG_IRQ_WORK 455 void arch_irq_work_raise(void) 456 { 457 if (is_smp()) 458 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 459 } 460 #endif 461 462 static const char *ipi_types[NR_IPI] = { 463 #define S(x,s) [x] = s 464 S(IPI_WAKEUP, "CPU wakeup interrupts"), 465 S(IPI_TIMER, "Timer broadcast interrupts"), 466 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 467 S(IPI_CALL_FUNC, "Function call interrupts"), 468 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 469 S(IPI_CPU_STOP, "CPU stop interrupts"), 470 S(IPI_IRQ_WORK, "IRQ work interrupts"), 471 S(IPI_COMPLETION, "completion interrupts"), 472 }; 473 474 void show_ipi_list(struct seq_file *p, int prec) 475 { 476 unsigned int cpu, i; 477 478 for (i = 0; i < NR_IPI; i++) { 479 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 480 481 for_each_online_cpu(cpu) 482 seq_printf(p, "%10u ", 483 __get_irq_stat(cpu, ipi_irqs[i])); 484 485 seq_printf(p, " %s\n", ipi_types[i]); 486 } 487 } 488 489 u64 smp_irq_stat_cpu(unsigned int cpu) 490 { 491 u64 sum = 0; 492 int i; 493 494 for (i = 0; i < NR_IPI; i++) 495 sum += __get_irq_stat(cpu, ipi_irqs[i]); 496 497 return sum; 498 } 499 500 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 501 void tick_broadcast(const struct cpumask *mask) 502 { 503 smp_cross_call(mask, IPI_TIMER); 504 } 505 #endif 506 507 static DEFINE_RAW_SPINLOCK(stop_lock); 508 509 /* 510 * ipi_cpu_stop - handle IPI from smp_send_stop() 511 */ 512 static void ipi_cpu_stop(unsigned int cpu) 513 { 514 if (system_state == SYSTEM_BOOTING || 515 system_state == SYSTEM_RUNNING) { 516 raw_spin_lock(&stop_lock); 517 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 518 dump_stack(); 519 raw_spin_unlock(&stop_lock); 520 } 521 522 set_cpu_online(cpu, false); 523 524 local_fiq_disable(); 525 local_irq_disable(); 526 527 while (1) 528 cpu_relax(); 529 } 530 531 static DEFINE_PER_CPU(struct completion *, cpu_completion); 532 533 int register_ipi_completion(struct completion *completion, int cpu) 534 { 535 per_cpu(cpu_completion, cpu) = completion; 536 return IPI_COMPLETION; 537 } 538 539 static void ipi_complete(unsigned int cpu) 540 { 541 complete(per_cpu(cpu_completion, cpu)); 542 } 543 544 /* 545 * Main handler for inter-processor interrupts 546 */ 547 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 548 { 549 handle_IPI(ipinr, regs); 550 } 551 552 void handle_IPI(int ipinr, struct pt_regs *regs) 553 { 554 unsigned int cpu = smp_processor_id(); 555 struct pt_regs *old_regs = set_irq_regs(regs); 556 557 if (ipinr < NR_IPI) 558 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 559 560 switch (ipinr) { 561 case IPI_WAKEUP: 562 break; 563 564 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 565 case IPI_TIMER: 566 irq_enter(); 567 tick_receive_broadcast(); 568 irq_exit(); 569 break; 570 #endif 571 572 case IPI_RESCHEDULE: 573 scheduler_ipi(); 574 break; 575 576 case IPI_CALL_FUNC: 577 irq_enter(); 578 generic_smp_call_function_interrupt(); 579 irq_exit(); 580 break; 581 582 case IPI_CALL_FUNC_SINGLE: 583 irq_enter(); 584 generic_smp_call_function_single_interrupt(); 585 irq_exit(); 586 break; 587 588 case IPI_CPU_STOP: 589 irq_enter(); 590 ipi_cpu_stop(cpu); 591 irq_exit(); 592 break; 593 594 #ifdef CONFIG_IRQ_WORK 595 case IPI_IRQ_WORK: 596 irq_enter(); 597 irq_work_run(); 598 irq_exit(); 599 break; 600 #endif 601 602 case IPI_COMPLETION: 603 irq_enter(); 604 ipi_complete(cpu); 605 irq_exit(); 606 break; 607 608 default: 609 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 610 cpu, ipinr); 611 break; 612 } 613 set_irq_regs(old_regs); 614 } 615 616 void smp_send_reschedule(int cpu) 617 { 618 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 619 } 620 621 void smp_send_stop(void) 622 { 623 unsigned long timeout; 624 struct cpumask mask; 625 626 cpumask_copy(&mask, cpu_online_mask); 627 cpumask_clear_cpu(smp_processor_id(), &mask); 628 if (!cpumask_empty(&mask)) 629 smp_cross_call(&mask, IPI_CPU_STOP); 630 631 /* Wait up to one second for other CPUs to stop */ 632 timeout = USEC_PER_SEC; 633 while (num_online_cpus() > 1 && timeout--) 634 udelay(1); 635 636 if (num_online_cpus() > 1) 637 pr_warning("SMP: failed to stop secondary CPUs\n"); 638 } 639 640 /* 641 * not supported here 642 */ 643 int setup_profiling_timer(unsigned int multiplier) 644 { 645 return -EINVAL; 646 } 647 648 #ifdef CONFIG_CPU_FREQ 649 650 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 651 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 652 static unsigned long global_l_p_j_ref; 653 static unsigned long global_l_p_j_ref_freq; 654 655 static int cpufreq_callback(struct notifier_block *nb, 656 unsigned long val, void *data) 657 { 658 struct cpufreq_freqs *freq = data; 659 int cpu = freq->cpu; 660 661 if (freq->flags & CPUFREQ_CONST_LOOPS) 662 return NOTIFY_OK; 663 664 if (!per_cpu(l_p_j_ref, cpu)) { 665 per_cpu(l_p_j_ref, cpu) = 666 per_cpu(cpu_data, cpu).loops_per_jiffy; 667 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 668 if (!global_l_p_j_ref) { 669 global_l_p_j_ref = loops_per_jiffy; 670 global_l_p_j_ref_freq = freq->old; 671 } 672 } 673 674 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 675 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 676 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 677 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 678 global_l_p_j_ref_freq, 679 freq->new); 680 per_cpu(cpu_data, cpu).loops_per_jiffy = 681 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 682 per_cpu(l_p_j_ref_freq, cpu), 683 freq->new); 684 } 685 return NOTIFY_OK; 686 } 687 688 static struct notifier_block cpufreq_notifier = { 689 .notifier_call = cpufreq_callback, 690 }; 691 692 static int __init register_cpufreq_notifier(void) 693 { 694 return cpufreq_register_notifier(&cpufreq_notifier, 695 CPUFREQ_TRANSITION_NOTIFIER); 696 } 697 core_initcall(register_cpufreq_notifier); 698 699 #endif 700