xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 8e9356c6)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49 
50 /*
51  * as from 2.5, kernels no longer have an init_tasks structure
52  * so we need some other way of telling a new secondary core
53  * where to place its SVC stack
54  */
55 struct secondary_data secondary_data;
56 
57 /*
58  * control for which core is the next to come out of the secondary
59  * boot "holding pen"
60  */
61 volatile int pen_release = -1;
62 
63 enum ipi_msg_type {
64 	IPI_WAKEUP,
65 	IPI_TIMER,
66 	IPI_RESCHEDULE,
67 	IPI_CALL_FUNC,
68 	IPI_CALL_FUNC_SINGLE,
69 	IPI_CPU_STOP,
70 	IPI_IRQ_WORK,
71 	IPI_COMPLETION,
72 };
73 
74 static DECLARE_COMPLETION(cpu_running);
75 
76 static struct smp_operations smp_ops;
77 
78 void __init smp_set_ops(struct smp_operations *ops)
79 {
80 	if (ops)
81 		smp_ops = *ops;
82 };
83 
84 static unsigned long get_arch_pgd(pgd_t *pgd)
85 {
86 	phys_addr_t pgdir = virt_to_idmap(pgd);
87 	BUG_ON(pgdir & ARCH_PGD_MASK);
88 	return pgdir >> ARCH_PGD_SHIFT;
89 }
90 
91 int __cpu_up(unsigned int cpu, struct task_struct *idle)
92 {
93 	int ret;
94 
95 	/*
96 	 * We need to tell the secondary core where to find
97 	 * its stack and the page tables.
98 	 */
99 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100 #ifdef CONFIG_ARM_MPU
101 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102 #endif
103 
104 #ifdef CONFIG_MMU
105 	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107 #endif
108 	sync_cache_w(&secondary_data);
109 
110 	/*
111 	 * Now bring the CPU into our world.
112 	 */
113 	ret = boot_secondary(cpu, idle);
114 	if (ret == 0) {
115 		/*
116 		 * CPU was successfully started, wait for it
117 		 * to come online or time out.
118 		 */
119 		wait_for_completion_timeout(&cpu_running,
120 						 msecs_to_jiffies(1000));
121 
122 		if (!cpu_online(cpu)) {
123 			pr_crit("CPU%u: failed to come online\n", cpu);
124 			ret = -EIO;
125 		}
126 	} else {
127 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128 	}
129 
130 
131 	memset(&secondary_data, 0, sizeof(secondary_data));
132 	return ret;
133 }
134 
135 /* platform specific SMP operations */
136 void __init smp_init_cpus(void)
137 {
138 	if (smp_ops.smp_init_cpus)
139 		smp_ops.smp_init_cpus();
140 }
141 
142 int boot_secondary(unsigned int cpu, struct task_struct *idle)
143 {
144 	if (smp_ops.smp_boot_secondary)
145 		return smp_ops.smp_boot_secondary(cpu, idle);
146 	return -ENOSYS;
147 }
148 
149 int platform_can_cpu_hotplug(void)
150 {
151 #ifdef CONFIG_HOTPLUG_CPU
152 	if (smp_ops.cpu_kill)
153 		return 1;
154 #endif
155 
156 	return 0;
157 }
158 
159 #ifdef CONFIG_HOTPLUG_CPU
160 static int platform_cpu_kill(unsigned int cpu)
161 {
162 	if (smp_ops.cpu_kill)
163 		return smp_ops.cpu_kill(cpu);
164 	return 1;
165 }
166 
167 static int platform_cpu_disable(unsigned int cpu)
168 {
169 	if (smp_ops.cpu_disable)
170 		return smp_ops.cpu_disable(cpu);
171 
172 	/*
173 	 * By default, allow disabling all CPUs except the first one,
174 	 * since this is special on a lot of platforms, e.g. because
175 	 * of clock tick interrupts.
176 	 */
177 	return cpu == 0 ? -EPERM : 0;
178 }
179 /*
180  * __cpu_disable runs on the processor to be shutdown.
181  */
182 int __cpu_disable(void)
183 {
184 	unsigned int cpu = smp_processor_id();
185 	int ret;
186 
187 	ret = platform_cpu_disable(cpu);
188 	if (ret)
189 		return ret;
190 
191 	/*
192 	 * Take this CPU offline.  Once we clear this, we can't return,
193 	 * and we must not schedule until we're ready to give up the cpu.
194 	 */
195 	set_cpu_online(cpu, false);
196 
197 	/*
198 	 * OK - migrate IRQs away from this CPU
199 	 */
200 	migrate_irqs();
201 
202 	/*
203 	 * Flush user cache and TLB mappings, and then remove this CPU
204 	 * from the vm mask set of all processes.
205 	 *
206 	 * Caches are flushed to the Level of Unification Inner Shareable
207 	 * to write-back dirty lines to unified caches shared by all CPUs.
208 	 */
209 	flush_cache_louis();
210 	local_flush_tlb_all();
211 
212 	clear_tasks_mm_cpumask(cpu);
213 
214 	return 0;
215 }
216 
217 static DECLARE_COMPLETION(cpu_died);
218 
219 /*
220  * called on the thread which is asking for a CPU to be shutdown -
221  * waits until shutdown has completed, or it is timed out.
222  */
223 void __cpu_die(unsigned int cpu)
224 {
225 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
226 		pr_err("CPU%u: cpu didn't die\n", cpu);
227 		return;
228 	}
229 	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
230 
231 	/*
232 	 * platform_cpu_kill() is generally expected to do the powering off
233 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
234 	 * be done by the CPU which is dying in preference to supporting
235 	 * this call, but that means there is _no_ synchronisation between
236 	 * the requesting CPU and the dying CPU actually losing power.
237 	 */
238 	if (!platform_cpu_kill(cpu))
239 		printk("CPU%u: unable to kill\n", cpu);
240 }
241 
242 /*
243  * Called from the idle thread for the CPU which has been shutdown.
244  *
245  * Note that we disable IRQs here, but do not re-enable them
246  * before returning to the caller. This is also the behaviour
247  * of the other hotplug-cpu capable cores, so presumably coming
248  * out of idle fixes this.
249  */
250 void __ref cpu_die(void)
251 {
252 	unsigned int cpu = smp_processor_id();
253 
254 	idle_task_exit();
255 
256 	local_irq_disable();
257 
258 	/*
259 	 * Flush the data out of the L1 cache for this CPU.  This must be
260 	 * before the completion to ensure that data is safely written out
261 	 * before platform_cpu_kill() gets called - which may disable
262 	 * *this* CPU and power down its cache.
263 	 */
264 	flush_cache_louis();
265 
266 	/*
267 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
268 	 * this returns, power and/or clocks can be removed at any point
269 	 * from this CPU and its cache by platform_cpu_kill().
270 	 */
271 	complete(&cpu_died);
272 
273 	/*
274 	 * Ensure that the cache lines associated with that completion are
275 	 * written out.  This covers the case where _this_ CPU is doing the
276 	 * powering down, to ensure that the completion is visible to the
277 	 * CPU waiting for this one.
278 	 */
279 	flush_cache_louis();
280 
281 	/*
282 	 * The actual CPU shutdown procedure is at least platform (if not
283 	 * CPU) specific.  This may remove power, or it may simply spin.
284 	 *
285 	 * Platforms are generally expected *NOT* to return from this call,
286 	 * although there are some which do because they have no way to
287 	 * power down the CPU.  These platforms are the _only_ reason we
288 	 * have a return path which uses the fragment of assembly below.
289 	 *
290 	 * The return path should not be used for platforms which can
291 	 * power off the CPU.
292 	 */
293 	if (smp_ops.cpu_die)
294 		smp_ops.cpu_die(cpu);
295 
296 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
297 		cpu);
298 
299 	/*
300 	 * Do not return to the idle loop - jump back to the secondary
301 	 * cpu initialisation.  There's some initialisation which needs
302 	 * to be repeated to undo the effects of taking the CPU offline.
303 	 */
304 	__asm__("mov	sp, %0\n"
305 	"	mov	fp, #0\n"
306 	"	b	secondary_start_kernel"
307 		:
308 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
309 }
310 #endif /* CONFIG_HOTPLUG_CPU */
311 
312 /*
313  * Called by both boot and secondaries to move global data into
314  * per-processor storage.
315  */
316 static void smp_store_cpu_info(unsigned int cpuid)
317 {
318 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
319 
320 	cpu_info->loops_per_jiffy = loops_per_jiffy;
321 	cpu_info->cpuid = read_cpuid_id();
322 
323 	store_cpu_topology(cpuid);
324 }
325 
326 /*
327  * This is the secondary CPU boot entry.  We're using this CPUs
328  * idle thread stack, but a set of temporary page tables.
329  */
330 asmlinkage void secondary_start_kernel(void)
331 {
332 	struct mm_struct *mm = &init_mm;
333 	unsigned int cpu;
334 
335 	/*
336 	 * The identity mapping is uncached (strongly ordered), so
337 	 * switch away from it before attempting any exclusive accesses.
338 	 */
339 	cpu_switch_mm(mm->pgd, mm);
340 	local_flush_bp_all();
341 	enter_lazy_tlb(mm, current);
342 	local_flush_tlb_all();
343 
344 	/*
345 	 * All kernel threads share the same mm context; grab a
346 	 * reference and switch to it.
347 	 */
348 	cpu = smp_processor_id();
349 	atomic_inc(&mm->mm_count);
350 	current->active_mm = mm;
351 	cpumask_set_cpu(cpu, mm_cpumask(mm));
352 
353 	cpu_init();
354 
355 	printk("CPU%u: Booted secondary processor\n", cpu);
356 
357 	preempt_disable();
358 	trace_hardirqs_off();
359 
360 	/*
361 	 * Give the platform a chance to do its own initialisation.
362 	 */
363 	if (smp_ops.smp_secondary_init)
364 		smp_ops.smp_secondary_init(cpu);
365 
366 	notify_cpu_starting(cpu);
367 
368 	calibrate_delay();
369 
370 	smp_store_cpu_info(cpu);
371 
372 	/*
373 	 * OK, now it's safe to let the boot CPU continue.  Wait for
374 	 * the CPU migration code to notice that the CPU is online
375 	 * before we continue - which happens after __cpu_up returns.
376 	 */
377 	set_cpu_online(cpu, true);
378 	complete(&cpu_running);
379 
380 	local_irq_enable();
381 	local_fiq_enable();
382 
383 	/*
384 	 * OK, it's off to the idle thread for us
385 	 */
386 	cpu_startup_entry(CPUHP_ONLINE);
387 }
388 
389 void __init smp_cpus_done(unsigned int max_cpus)
390 {
391 	printk(KERN_INFO "SMP: Total of %d processors activated.\n",
392 	       num_online_cpus());
393 
394 	hyp_mode_check();
395 }
396 
397 void __init smp_prepare_boot_cpu(void)
398 {
399 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
400 }
401 
402 void __init smp_prepare_cpus(unsigned int max_cpus)
403 {
404 	unsigned int ncores = num_possible_cpus();
405 
406 	init_cpu_topology();
407 
408 	smp_store_cpu_info(smp_processor_id());
409 
410 	/*
411 	 * are we trying to boot more cores than exist?
412 	 */
413 	if (max_cpus > ncores)
414 		max_cpus = ncores;
415 	if (ncores > 1 && max_cpus) {
416 		/*
417 		 * Initialise the present map, which describes the set of CPUs
418 		 * actually populated at the present time. A platform should
419 		 * re-initialize the map in the platforms smp_prepare_cpus()
420 		 * if present != possible (e.g. physical hotplug).
421 		 */
422 		init_cpu_present(cpu_possible_mask);
423 
424 		/*
425 		 * Initialise the SCU if there are more than one CPU
426 		 * and let them know where to start.
427 		 */
428 		if (smp_ops.smp_prepare_cpus)
429 			smp_ops.smp_prepare_cpus(max_cpus);
430 	}
431 }
432 
433 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
434 
435 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
436 {
437 	if (!smp_cross_call)
438 		smp_cross_call = fn;
439 }
440 
441 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
442 {
443 	smp_cross_call(mask, IPI_CALL_FUNC);
444 }
445 
446 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
447 {
448 	smp_cross_call(mask, IPI_WAKEUP);
449 }
450 
451 void arch_send_call_function_single_ipi(int cpu)
452 {
453 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
454 }
455 
456 #ifdef CONFIG_IRQ_WORK
457 void arch_irq_work_raise(void)
458 {
459 	if (is_smp())
460 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
461 }
462 #endif
463 
464 static const char *ipi_types[NR_IPI] = {
465 #define S(x,s)	[x] = s
466 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
467 	S(IPI_TIMER, "Timer broadcast interrupts"),
468 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
469 	S(IPI_CALL_FUNC, "Function call interrupts"),
470 	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
471 	S(IPI_CPU_STOP, "CPU stop interrupts"),
472 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
473 	S(IPI_COMPLETION, "completion interrupts"),
474 };
475 
476 void show_ipi_list(struct seq_file *p, int prec)
477 {
478 	unsigned int cpu, i;
479 
480 	for (i = 0; i < NR_IPI; i++) {
481 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
482 
483 		for_each_online_cpu(cpu)
484 			seq_printf(p, "%10u ",
485 				   __get_irq_stat(cpu, ipi_irqs[i]));
486 
487 		seq_printf(p, " %s\n", ipi_types[i]);
488 	}
489 }
490 
491 u64 smp_irq_stat_cpu(unsigned int cpu)
492 {
493 	u64 sum = 0;
494 	int i;
495 
496 	for (i = 0; i < NR_IPI; i++)
497 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
498 
499 	return sum;
500 }
501 
502 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
503 void tick_broadcast(const struct cpumask *mask)
504 {
505 	smp_cross_call(mask, IPI_TIMER);
506 }
507 #endif
508 
509 static DEFINE_RAW_SPINLOCK(stop_lock);
510 
511 /*
512  * ipi_cpu_stop - handle IPI from smp_send_stop()
513  */
514 static void ipi_cpu_stop(unsigned int cpu)
515 {
516 	if (system_state == SYSTEM_BOOTING ||
517 	    system_state == SYSTEM_RUNNING) {
518 		raw_spin_lock(&stop_lock);
519 		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
520 		dump_stack();
521 		raw_spin_unlock(&stop_lock);
522 	}
523 
524 	set_cpu_online(cpu, false);
525 
526 	local_fiq_disable();
527 	local_irq_disable();
528 
529 	while (1)
530 		cpu_relax();
531 }
532 
533 static DEFINE_PER_CPU(struct completion *, cpu_completion);
534 
535 int register_ipi_completion(struct completion *completion, int cpu)
536 {
537 	per_cpu(cpu_completion, cpu) = completion;
538 	return IPI_COMPLETION;
539 }
540 
541 static void ipi_complete(unsigned int cpu)
542 {
543 	complete(per_cpu(cpu_completion, cpu));
544 }
545 
546 /*
547  * Main handler for inter-processor interrupts
548  */
549 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
550 {
551 	handle_IPI(ipinr, regs);
552 }
553 
554 void handle_IPI(int ipinr, struct pt_regs *regs)
555 {
556 	unsigned int cpu = smp_processor_id();
557 	struct pt_regs *old_regs = set_irq_regs(regs);
558 
559 	if (ipinr < NR_IPI)
560 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
561 
562 	switch (ipinr) {
563 	case IPI_WAKEUP:
564 		break;
565 
566 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
567 	case IPI_TIMER:
568 		irq_enter();
569 		tick_receive_broadcast();
570 		irq_exit();
571 		break;
572 #endif
573 
574 	case IPI_RESCHEDULE:
575 		scheduler_ipi();
576 		break;
577 
578 	case IPI_CALL_FUNC:
579 		irq_enter();
580 		generic_smp_call_function_interrupt();
581 		irq_exit();
582 		break;
583 
584 	case IPI_CALL_FUNC_SINGLE:
585 		irq_enter();
586 		generic_smp_call_function_single_interrupt();
587 		irq_exit();
588 		break;
589 
590 	case IPI_CPU_STOP:
591 		irq_enter();
592 		ipi_cpu_stop(cpu);
593 		irq_exit();
594 		break;
595 
596 #ifdef CONFIG_IRQ_WORK
597 	case IPI_IRQ_WORK:
598 		irq_enter();
599 		irq_work_run();
600 		irq_exit();
601 		break;
602 #endif
603 
604 	case IPI_COMPLETION:
605 		irq_enter();
606 		ipi_complete(cpu);
607 		irq_exit();
608 		break;
609 
610 	default:
611 		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
612 		       cpu, ipinr);
613 		break;
614 	}
615 	set_irq_regs(old_regs);
616 }
617 
618 void smp_send_reschedule(int cpu)
619 {
620 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
621 }
622 
623 void smp_send_stop(void)
624 {
625 	unsigned long timeout;
626 	struct cpumask mask;
627 
628 	cpumask_copy(&mask, cpu_online_mask);
629 	cpumask_clear_cpu(smp_processor_id(), &mask);
630 	if (!cpumask_empty(&mask))
631 		smp_cross_call(&mask, IPI_CPU_STOP);
632 
633 	/* Wait up to one second for other CPUs to stop */
634 	timeout = USEC_PER_SEC;
635 	while (num_online_cpus() > 1 && timeout--)
636 		udelay(1);
637 
638 	if (num_online_cpus() > 1)
639 		pr_warning("SMP: failed to stop secondary CPUs\n");
640 }
641 
642 /*
643  * not supported here
644  */
645 int setup_profiling_timer(unsigned int multiplier)
646 {
647 	return -EINVAL;
648 }
649 
650 #ifdef CONFIG_CPU_FREQ
651 
652 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
653 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
654 static unsigned long global_l_p_j_ref;
655 static unsigned long global_l_p_j_ref_freq;
656 
657 static int cpufreq_callback(struct notifier_block *nb,
658 					unsigned long val, void *data)
659 {
660 	struct cpufreq_freqs *freq = data;
661 	int cpu = freq->cpu;
662 
663 	if (freq->flags & CPUFREQ_CONST_LOOPS)
664 		return NOTIFY_OK;
665 
666 	if (!per_cpu(l_p_j_ref, cpu)) {
667 		per_cpu(l_p_j_ref, cpu) =
668 			per_cpu(cpu_data, cpu).loops_per_jiffy;
669 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
670 		if (!global_l_p_j_ref) {
671 			global_l_p_j_ref = loops_per_jiffy;
672 			global_l_p_j_ref_freq = freq->old;
673 		}
674 	}
675 
676 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
677 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
678 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
679 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
680 						global_l_p_j_ref_freq,
681 						freq->new);
682 		per_cpu(cpu_data, cpu).loops_per_jiffy =
683 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
684 					per_cpu(l_p_j_ref_freq, cpu),
685 					freq->new);
686 	}
687 	return NOTIFY_OK;
688 }
689 
690 static struct notifier_block cpufreq_notifier = {
691 	.notifier_call  = cpufreq_callback,
692 };
693 
694 static int __init register_cpufreq_notifier(void)
695 {
696 	return cpufreq_register_notifier(&cpufreq_notifier,
697 						CPUFREQ_TRANSITION_NOTIFIER);
698 }
699 core_initcall(register_cpufreq_notifier);
700 
701 #endif
702