1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/hotplug.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/interrupt.h> 18 #include <linux/cache.h> 19 #include <linux/profile.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/err.h> 23 #include <linux/cpu.h> 24 #include <linux/seq_file.h> 25 #include <linux/irq.h> 26 #include <linux/nmi.h> 27 #include <linux/percpu.h> 28 #include <linux/clockchips.h> 29 #include <linux/completion.h> 30 #include <linux/cpufreq.h> 31 #include <linux/irq_work.h> 32 33 #include <linux/atomic.h> 34 #include <asm/bugs.h> 35 #include <asm/smp.h> 36 #include <asm/cacheflush.h> 37 #include <asm/cpu.h> 38 #include <asm/cputype.h> 39 #include <asm/exception.h> 40 #include <asm/idmap.h> 41 #include <asm/topology.h> 42 #include <asm/mmu_context.h> 43 #include <asm/pgtable.h> 44 #include <asm/pgalloc.h> 45 #include <asm/procinfo.h> 46 #include <asm/processor.h> 47 #include <asm/sections.h> 48 #include <asm/tlbflush.h> 49 #include <asm/ptrace.h> 50 #include <asm/smp_plat.h> 51 #include <asm/virt.h> 52 #include <asm/mach/arch.h> 53 #include <asm/mpu.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/ipi.h> 57 58 /* 59 * as from 2.5, kernels no longer have an init_tasks structure 60 * so we need some other way of telling a new secondary core 61 * where to place its SVC stack 62 */ 63 struct secondary_data secondary_data; 64 65 /* 66 * control for which core is the next to come out of the secondary 67 * boot "holding pen" 68 */ 69 volatile int pen_release = -1; 70 71 enum ipi_msg_type { 72 IPI_WAKEUP, 73 IPI_TIMER, 74 IPI_RESCHEDULE, 75 IPI_CALL_FUNC, 76 IPI_CPU_STOP, 77 IPI_IRQ_WORK, 78 IPI_COMPLETION, 79 IPI_CPU_BACKTRACE, 80 /* 81 * SGI8-15 can be reserved by secure firmware, and thus may 82 * not be usable by the kernel. Please keep the above limited 83 * to at most 8 entries. 84 */ 85 }; 86 87 static DECLARE_COMPLETION(cpu_running); 88 89 static struct smp_operations smp_ops __ro_after_init; 90 91 void __init smp_set_ops(const struct smp_operations *ops) 92 { 93 if (ops) 94 smp_ops = *ops; 95 }; 96 97 static unsigned long get_arch_pgd(pgd_t *pgd) 98 { 99 #ifdef CONFIG_ARM_LPAE 100 return __phys_to_pfn(virt_to_phys(pgd)); 101 #else 102 return virt_to_phys(pgd); 103 #endif 104 } 105 106 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 107 static int secondary_biglittle_prepare(unsigned int cpu) 108 { 109 if (!cpu_vtable[cpu]) 110 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 111 112 return cpu_vtable[cpu] ? 0 : -ENOMEM; 113 } 114 115 static void secondary_biglittle_init(void) 116 { 117 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 118 } 119 #else 120 static int secondary_biglittle_prepare(unsigned int cpu) 121 { 122 return 0; 123 } 124 125 static void secondary_biglittle_init(void) 126 { 127 } 128 #endif 129 130 int __cpu_up(unsigned int cpu, struct task_struct *idle) 131 { 132 int ret; 133 134 if (!smp_ops.smp_boot_secondary) 135 return -ENOSYS; 136 137 ret = secondary_biglittle_prepare(cpu); 138 if (ret) 139 return ret; 140 141 /* 142 * We need to tell the secondary core where to find 143 * its stack and the page tables. 144 */ 145 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 146 #ifdef CONFIG_ARM_MPU 147 secondary_data.mpu_rgn_info = &mpu_rgn_info; 148 #endif 149 150 #ifdef CONFIG_MMU 151 secondary_data.pgdir = virt_to_phys(idmap_pgd); 152 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 153 #endif 154 sync_cache_w(&secondary_data); 155 156 /* 157 * Now bring the CPU into our world. 158 */ 159 ret = smp_ops.smp_boot_secondary(cpu, idle); 160 if (ret == 0) { 161 /* 162 * CPU was successfully started, wait for it 163 * to come online or time out. 164 */ 165 wait_for_completion_timeout(&cpu_running, 166 msecs_to_jiffies(1000)); 167 168 if (!cpu_online(cpu)) { 169 pr_crit("CPU%u: failed to come online\n", cpu); 170 ret = -EIO; 171 } 172 } else { 173 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 174 } 175 176 177 memset(&secondary_data, 0, sizeof(secondary_data)); 178 return ret; 179 } 180 181 /* platform specific SMP operations */ 182 void __init smp_init_cpus(void) 183 { 184 if (smp_ops.smp_init_cpus) 185 smp_ops.smp_init_cpus(); 186 } 187 188 int platform_can_secondary_boot(void) 189 { 190 return !!smp_ops.smp_boot_secondary; 191 } 192 193 int platform_can_cpu_hotplug(void) 194 { 195 #ifdef CONFIG_HOTPLUG_CPU 196 if (smp_ops.cpu_kill) 197 return 1; 198 #endif 199 200 return 0; 201 } 202 203 #ifdef CONFIG_HOTPLUG_CPU 204 static int platform_cpu_kill(unsigned int cpu) 205 { 206 if (smp_ops.cpu_kill) 207 return smp_ops.cpu_kill(cpu); 208 return 1; 209 } 210 211 static int platform_cpu_disable(unsigned int cpu) 212 { 213 if (smp_ops.cpu_disable) 214 return smp_ops.cpu_disable(cpu); 215 216 return 0; 217 } 218 219 int platform_can_hotplug_cpu(unsigned int cpu) 220 { 221 /* cpu_die must be specified to support hotplug */ 222 if (!smp_ops.cpu_die) 223 return 0; 224 225 if (smp_ops.cpu_can_disable) 226 return smp_ops.cpu_can_disable(cpu); 227 228 /* 229 * By default, allow disabling all CPUs except the first one, 230 * since this is special on a lot of platforms, e.g. because 231 * of clock tick interrupts. 232 */ 233 return cpu != 0; 234 } 235 236 /* 237 * __cpu_disable runs on the processor to be shutdown. 238 */ 239 int __cpu_disable(void) 240 { 241 unsigned int cpu = smp_processor_id(); 242 int ret; 243 244 ret = platform_cpu_disable(cpu); 245 if (ret) 246 return ret; 247 248 /* 249 * Take this CPU offline. Once we clear this, we can't return, 250 * and we must not schedule until we're ready to give up the cpu. 251 */ 252 set_cpu_online(cpu, false); 253 254 /* 255 * OK - migrate IRQs away from this CPU 256 */ 257 irq_migrate_all_off_this_cpu(); 258 259 /* 260 * Flush user cache and TLB mappings, and then remove this CPU 261 * from the vm mask set of all processes. 262 * 263 * Caches are flushed to the Level of Unification Inner Shareable 264 * to write-back dirty lines to unified caches shared by all CPUs. 265 */ 266 flush_cache_louis(); 267 local_flush_tlb_all(); 268 269 return 0; 270 } 271 272 static DECLARE_COMPLETION(cpu_died); 273 274 /* 275 * called on the thread which is asking for a CPU to be shutdown - 276 * waits until shutdown has completed, or it is timed out. 277 */ 278 void __cpu_die(unsigned int cpu) 279 { 280 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 281 pr_err("CPU%u: cpu didn't die\n", cpu); 282 return; 283 } 284 pr_debug("CPU%u: shutdown\n", cpu); 285 286 clear_tasks_mm_cpumask(cpu); 287 /* 288 * platform_cpu_kill() is generally expected to do the powering off 289 * and/or cutting of clocks to the dying CPU. Optionally, this may 290 * be done by the CPU which is dying in preference to supporting 291 * this call, but that means there is _no_ synchronisation between 292 * the requesting CPU and the dying CPU actually losing power. 293 */ 294 if (!platform_cpu_kill(cpu)) 295 pr_err("CPU%u: unable to kill\n", cpu); 296 } 297 298 /* 299 * Called from the idle thread for the CPU which has been shutdown. 300 * 301 * Note that we disable IRQs here, but do not re-enable them 302 * before returning to the caller. This is also the behaviour 303 * of the other hotplug-cpu capable cores, so presumably coming 304 * out of idle fixes this. 305 */ 306 void arch_cpu_idle_dead(void) 307 { 308 unsigned int cpu = smp_processor_id(); 309 310 idle_task_exit(); 311 312 local_irq_disable(); 313 314 /* 315 * Flush the data out of the L1 cache for this CPU. This must be 316 * before the completion to ensure that data is safely written out 317 * before platform_cpu_kill() gets called - which may disable 318 * *this* CPU and power down its cache. 319 */ 320 flush_cache_louis(); 321 322 /* 323 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 324 * this returns, power and/or clocks can be removed at any point 325 * from this CPU and its cache by platform_cpu_kill(). 326 */ 327 complete(&cpu_died); 328 329 /* 330 * Ensure that the cache lines associated with that completion are 331 * written out. This covers the case where _this_ CPU is doing the 332 * powering down, to ensure that the completion is visible to the 333 * CPU waiting for this one. 334 */ 335 flush_cache_louis(); 336 337 /* 338 * The actual CPU shutdown procedure is at least platform (if not 339 * CPU) specific. This may remove power, or it may simply spin. 340 * 341 * Platforms are generally expected *NOT* to return from this call, 342 * although there are some which do because they have no way to 343 * power down the CPU. These platforms are the _only_ reason we 344 * have a return path which uses the fragment of assembly below. 345 * 346 * The return path should not be used for platforms which can 347 * power off the CPU. 348 */ 349 if (smp_ops.cpu_die) 350 smp_ops.cpu_die(cpu); 351 352 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 353 cpu); 354 355 /* 356 * Do not return to the idle loop - jump back to the secondary 357 * cpu initialisation. There's some initialisation which needs 358 * to be repeated to undo the effects of taking the CPU offline. 359 */ 360 __asm__("mov sp, %0\n" 361 " mov fp, #0\n" 362 " b secondary_start_kernel" 363 : 364 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 365 } 366 #endif /* CONFIG_HOTPLUG_CPU */ 367 368 /* 369 * Called by both boot and secondaries to move global data into 370 * per-processor storage. 371 */ 372 static void smp_store_cpu_info(unsigned int cpuid) 373 { 374 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 375 376 cpu_info->loops_per_jiffy = loops_per_jiffy; 377 cpu_info->cpuid = read_cpuid_id(); 378 379 store_cpu_topology(cpuid); 380 } 381 382 /* 383 * This is the secondary CPU boot entry. We're using this CPUs 384 * idle thread stack, but a set of temporary page tables. 385 */ 386 asmlinkage void secondary_start_kernel(void) 387 { 388 struct mm_struct *mm = &init_mm; 389 unsigned int cpu; 390 391 secondary_biglittle_init(); 392 393 /* 394 * The identity mapping is uncached (strongly ordered), so 395 * switch away from it before attempting any exclusive accesses. 396 */ 397 cpu_switch_mm(mm->pgd, mm); 398 local_flush_bp_all(); 399 enter_lazy_tlb(mm, current); 400 local_flush_tlb_all(); 401 402 /* 403 * All kernel threads share the same mm context; grab a 404 * reference and switch to it. 405 */ 406 cpu = smp_processor_id(); 407 mmgrab(mm); 408 current->active_mm = mm; 409 cpumask_set_cpu(cpu, mm_cpumask(mm)); 410 411 cpu_init(); 412 413 #ifndef CONFIG_MMU 414 setup_vectors_base(); 415 #endif 416 pr_debug("CPU%u: Booted secondary processor\n", cpu); 417 418 preempt_disable(); 419 trace_hardirqs_off(); 420 421 /* 422 * Give the platform a chance to do its own initialisation. 423 */ 424 if (smp_ops.smp_secondary_init) 425 smp_ops.smp_secondary_init(cpu); 426 427 notify_cpu_starting(cpu); 428 429 calibrate_delay(); 430 431 smp_store_cpu_info(cpu); 432 433 /* 434 * OK, now it's safe to let the boot CPU continue. Wait for 435 * the CPU migration code to notice that the CPU is online 436 * before we continue - which happens after __cpu_up returns. 437 */ 438 set_cpu_online(cpu, true); 439 440 check_other_bugs(); 441 442 complete(&cpu_running); 443 444 local_irq_enable(); 445 local_fiq_enable(); 446 local_abt_enable(); 447 448 /* 449 * OK, it's off to the idle thread for us 450 */ 451 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 452 } 453 454 void __init smp_cpus_done(unsigned int max_cpus) 455 { 456 int cpu; 457 unsigned long bogosum = 0; 458 459 for_each_online_cpu(cpu) 460 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 461 462 printk(KERN_INFO "SMP: Total of %d processors activated " 463 "(%lu.%02lu BogoMIPS).\n", 464 num_online_cpus(), 465 bogosum / (500000/HZ), 466 (bogosum / (5000/HZ)) % 100); 467 468 hyp_mode_check(); 469 } 470 471 void __init smp_prepare_boot_cpu(void) 472 { 473 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 474 } 475 476 void __init smp_prepare_cpus(unsigned int max_cpus) 477 { 478 unsigned int ncores = num_possible_cpus(); 479 480 init_cpu_topology(); 481 482 smp_store_cpu_info(smp_processor_id()); 483 484 /* 485 * are we trying to boot more cores than exist? 486 */ 487 if (max_cpus > ncores) 488 max_cpus = ncores; 489 if (ncores > 1 && max_cpus) { 490 /* 491 * Initialise the present map, which describes the set of CPUs 492 * actually populated at the present time. A platform should 493 * re-initialize the map in the platforms smp_prepare_cpus() 494 * if present != possible (e.g. physical hotplug). 495 */ 496 init_cpu_present(cpu_possible_mask); 497 498 /* 499 * Initialise the SCU if there are more than one CPU 500 * and let them know where to start. 501 */ 502 if (smp_ops.smp_prepare_cpus) 503 smp_ops.smp_prepare_cpus(max_cpus); 504 } 505 } 506 507 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 508 509 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 510 { 511 if (!__smp_cross_call) 512 __smp_cross_call = fn; 513 } 514 515 static const char *ipi_types[NR_IPI] __tracepoint_string = { 516 #define S(x,s) [x] = s 517 S(IPI_WAKEUP, "CPU wakeup interrupts"), 518 S(IPI_TIMER, "Timer broadcast interrupts"), 519 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 520 S(IPI_CALL_FUNC, "Function call interrupts"), 521 S(IPI_CPU_STOP, "CPU stop interrupts"), 522 S(IPI_IRQ_WORK, "IRQ work interrupts"), 523 S(IPI_COMPLETION, "completion interrupts"), 524 }; 525 526 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 527 { 528 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 529 __smp_cross_call(target, ipinr); 530 } 531 532 void show_ipi_list(struct seq_file *p, int prec) 533 { 534 unsigned int cpu, i; 535 536 for (i = 0; i < NR_IPI; i++) { 537 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 538 539 for_each_online_cpu(cpu) 540 seq_printf(p, "%10u ", 541 __get_irq_stat(cpu, ipi_irqs[i])); 542 543 seq_printf(p, " %s\n", ipi_types[i]); 544 } 545 } 546 547 u64 smp_irq_stat_cpu(unsigned int cpu) 548 { 549 u64 sum = 0; 550 int i; 551 552 for (i = 0; i < NR_IPI; i++) 553 sum += __get_irq_stat(cpu, ipi_irqs[i]); 554 555 return sum; 556 } 557 558 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 559 { 560 smp_cross_call(mask, IPI_CALL_FUNC); 561 } 562 563 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 564 { 565 smp_cross_call(mask, IPI_WAKEUP); 566 } 567 568 void arch_send_call_function_single_ipi(int cpu) 569 { 570 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 571 } 572 573 #ifdef CONFIG_IRQ_WORK 574 void arch_irq_work_raise(void) 575 { 576 if (arch_irq_work_has_interrupt()) 577 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 578 } 579 #endif 580 581 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 582 void tick_broadcast(const struct cpumask *mask) 583 { 584 smp_cross_call(mask, IPI_TIMER); 585 } 586 #endif 587 588 static DEFINE_RAW_SPINLOCK(stop_lock); 589 590 /* 591 * ipi_cpu_stop - handle IPI from smp_send_stop() 592 */ 593 static void ipi_cpu_stop(unsigned int cpu) 594 { 595 if (system_state <= SYSTEM_RUNNING) { 596 raw_spin_lock(&stop_lock); 597 pr_crit("CPU%u: stopping\n", cpu); 598 dump_stack(); 599 raw_spin_unlock(&stop_lock); 600 } 601 602 set_cpu_online(cpu, false); 603 604 local_fiq_disable(); 605 local_irq_disable(); 606 607 while (1) 608 cpu_relax(); 609 } 610 611 static DEFINE_PER_CPU(struct completion *, cpu_completion); 612 613 int register_ipi_completion(struct completion *completion, int cpu) 614 { 615 per_cpu(cpu_completion, cpu) = completion; 616 return IPI_COMPLETION; 617 } 618 619 static void ipi_complete(unsigned int cpu) 620 { 621 complete(per_cpu(cpu_completion, cpu)); 622 } 623 624 /* 625 * Main handler for inter-processor interrupts 626 */ 627 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 628 { 629 handle_IPI(ipinr, regs); 630 } 631 632 void handle_IPI(int ipinr, struct pt_regs *regs) 633 { 634 unsigned int cpu = smp_processor_id(); 635 struct pt_regs *old_regs = set_irq_regs(regs); 636 637 if ((unsigned)ipinr < NR_IPI) { 638 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 639 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 640 } 641 642 switch (ipinr) { 643 case IPI_WAKEUP: 644 break; 645 646 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 647 case IPI_TIMER: 648 irq_enter(); 649 tick_receive_broadcast(); 650 irq_exit(); 651 break; 652 #endif 653 654 case IPI_RESCHEDULE: 655 scheduler_ipi(); 656 break; 657 658 case IPI_CALL_FUNC: 659 irq_enter(); 660 generic_smp_call_function_interrupt(); 661 irq_exit(); 662 break; 663 664 case IPI_CPU_STOP: 665 irq_enter(); 666 ipi_cpu_stop(cpu); 667 irq_exit(); 668 break; 669 670 #ifdef CONFIG_IRQ_WORK 671 case IPI_IRQ_WORK: 672 irq_enter(); 673 irq_work_run(); 674 irq_exit(); 675 break; 676 #endif 677 678 case IPI_COMPLETION: 679 irq_enter(); 680 ipi_complete(cpu); 681 irq_exit(); 682 break; 683 684 case IPI_CPU_BACKTRACE: 685 printk_nmi_enter(); 686 irq_enter(); 687 nmi_cpu_backtrace(regs); 688 irq_exit(); 689 printk_nmi_exit(); 690 break; 691 692 default: 693 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 694 cpu, ipinr); 695 break; 696 } 697 698 if ((unsigned)ipinr < NR_IPI) 699 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 700 set_irq_regs(old_regs); 701 } 702 703 void smp_send_reschedule(int cpu) 704 { 705 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 706 } 707 708 void smp_send_stop(void) 709 { 710 unsigned long timeout; 711 struct cpumask mask; 712 713 cpumask_copy(&mask, cpu_online_mask); 714 cpumask_clear_cpu(smp_processor_id(), &mask); 715 if (!cpumask_empty(&mask)) 716 smp_cross_call(&mask, IPI_CPU_STOP); 717 718 /* Wait up to one second for other CPUs to stop */ 719 timeout = USEC_PER_SEC; 720 while (num_online_cpus() > 1 && timeout--) 721 udelay(1); 722 723 if (num_online_cpus() > 1) 724 pr_warn("SMP: failed to stop secondary CPUs\n"); 725 } 726 727 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 728 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 729 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 730 * kdump fails. So split out the panic_smp_self_stop() and add 731 * set_cpu_online(smp_processor_id(), false). 732 */ 733 void panic_smp_self_stop(void) 734 { 735 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 736 smp_processor_id()); 737 set_cpu_online(smp_processor_id(), false); 738 while (1) 739 cpu_relax(); 740 } 741 742 /* 743 * not supported here 744 */ 745 int setup_profiling_timer(unsigned int multiplier) 746 { 747 return -EINVAL; 748 } 749 750 #ifdef CONFIG_CPU_FREQ 751 752 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 754 static unsigned long global_l_p_j_ref; 755 static unsigned long global_l_p_j_ref_freq; 756 757 static int cpufreq_callback(struct notifier_block *nb, 758 unsigned long val, void *data) 759 { 760 struct cpufreq_freqs *freq = data; 761 int cpu = freq->cpu; 762 763 if (freq->flags & CPUFREQ_CONST_LOOPS) 764 return NOTIFY_OK; 765 766 if (!per_cpu(l_p_j_ref, cpu)) { 767 per_cpu(l_p_j_ref, cpu) = 768 per_cpu(cpu_data, cpu).loops_per_jiffy; 769 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 770 if (!global_l_p_j_ref) { 771 global_l_p_j_ref = loops_per_jiffy; 772 global_l_p_j_ref_freq = freq->old; 773 } 774 } 775 776 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 777 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 778 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 779 global_l_p_j_ref_freq, 780 freq->new); 781 per_cpu(cpu_data, cpu).loops_per_jiffy = 782 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 783 per_cpu(l_p_j_ref_freq, cpu), 784 freq->new); 785 } 786 return NOTIFY_OK; 787 } 788 789 static struct notifier_block cpufreq_notifier = { 790 .notifier_call = cpufreq_callback, 791 }; 792 793 static int __init register_cpufreq_notifier(void) 794 { 795 return cpufreq_register_notifier(&cpufreq_notifier, 796 CPUFREQ_TRANSITION_NOTIFIER); 797 } 798 core_initcall(register_cpufreq_notifier); 799 800 #endif 801 802 static void raise_nmi(cpumask_t *mask) 803 { 804 smp_cross_call(mask, IPI_CPU_BACKTRACE); 805 } 806 807 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 808 { 809 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 810 } 811