xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 87c2ce3b)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23 
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33 
34 /*
35  * bitmask of present and online CPUs.
36  * The present bitmask indicates that the CPU is physically present.
37  * The online bitmask indicates that the CPU is up and running.
38  */
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
41 
42 /*
43  * as from 2.5, kernels no longer have an init_tasks structure
44  * so we need some other way of telling a new secondary core
45  * where to place its SVC stack
46  */
47 struct secondary_data secondary_data;
48 
49 /*
50  * structures for inter-processor calls
51  * - A collection of single bit ipi messages.
52  */
53 struct ipi_data {
54 	spinlock_t lock;
55 	unsigned long ipi_count;
56 	unsigned long bits;
57 };
58 
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 	.lock	= SPIN_LOCK_UNLOCKED,
61 };
62 
63 enum ipi_msg_type {
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 };
69 
70 struct smp_call_struct {
71 	void (*func)(void *info);
72 	void *info;
73 	int wait;
74 	cpumask_t pending;
75 	cpumask_t unfinished;
76 };
77 
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80 
81 int __cpuinit __cpu_up(unsigned int cpu)
82 {
83 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
84 	struct task_struct *idle = ci->idle;
85 	pgd_t *pgd;
86 	pmd_t *pmd;
87 	int ret;
88 
89 	/*
90 	 * Spawn a new process manually, if not already done.
91 	 * Grab a pointer to its task struct so we can mess with it
92 	 */
93 	if (!idle) {
94 		idle = fork_idle(cpu);
95 		if (IS_ERR(idle)) {
96 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
97 			return PTR_ERR(idle);
98 		}
99 		ci->idle = idle;
100 	}
101 
102 	/*
103 	 * Allocate initial page tables to allow the new CPU to
104 	 * enable the MMU safely.  This essentially means a set
105 	 * of our "standard" page tables, with the addition of
106 	 * a 1:1 mapping for the physical address of the kernel.
107 	 */
108 	pgd = pgd_alloc(&init_mm);
109 	pmd = pmd_offset(pgd, PHYS_OFFSET);
110 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
111 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
112 
113 	/*
114 	 * We need to tell the secondary core where to find
115 	 * its stack and the page tables.
116 	 */
117 	secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP;
118 	secondary_data.pgdir = virt_to_phys(pgd);
119 	wmb();
120 
121 	/*
122 	 * Now bring the CPU into our world.
123 	 */
124 	ret = boot_secondary(cpu, idle);
125 	if (ret == 0) {
126 		unsigned long timeout;
127 
128 		/*
129 		 * CPU was successfully started, wait for it
130 		 * to come online or time out.
131 		 */
132 		timeout = jiffies + HZ;
133 		while (time_before(jiffies, timeout)) {
134 			if (cpu_online(cpu))
135 				break;
136 
137 			udelay(10);
138 			barrier();
139 		}
140 
141 		if (!cpu_online(cpu))
142 			ret = -EIO;
143 	}
144 
145 	secondary_data.stack = NULL;
146 	secondary_data.pgdir = 0;
147 
148 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
149 	pgd_free(pgd);
150 
151 	if (ret) {
152 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
153 
154 		/*
155 		 * FIXME: We need to clean up the new idle thread. --rmk
156 		 */
157 	}
158 
159 	return ret;
160 }
161 
162 #ifdef CONFIG_HOTPLUG_CPU
163 /*
164  * __cpu_disable runs on the processor to be shutdown.
165  */
166 int __cpuexit __cpu_disable(void)
167 {
168 	unsigned int cpu = smp_processor_id();
169 	struct task_struct *p;
170 	int ret;
171 
172 	ret = mach_cpu_disable(cpu);
173 	if (ret)
174 		return ret;
175 
176 	/*
177 	 * Take this CPU offline.  Once we clear this, we can't return,
178 	 * and we must not schedule until we're ready to give up the cpu.
179 	 */
180 	cpu_clear(cpu, cpu_online_map);
181 
182 	/*
183 	 * OK - migrate IRQs away from this CPU
184 	 */
185 	migrate_irqs();
186 
187 	/*
188 	 * Stop the local timer for this CPU.
189 	 */
190 	local_timer_stop(cpu);
191 
192 	/*
193 	 * Flush user cache and TLB mappings, and then remove this CPU
194 	 * from the vm mask set of all processes.
195 	 */
196 	flush_cache_all();
197 	local_flush_tlb_all();
198 
199 	read_lock(&tasklist_lock);
200 	for_each_process(p) {
201 		if (p->mm)
202 			cpu_clear(cpu, p->mm->cpu_vm_mask);
203 	}
204 	read_unlock(&tasklist_lock);
205 
206 	return 0;
207 }
208 
209 /*
210  * called on the thread which is asking for a CPU to be shutdown -
211  * waits until shutdown has completed, or it is timed out.
212  */
213 void __cpuexit __cpu_die(unsigned int cpu)
214 {
215 	if (!platform_cpu_kill(cpu))
216 		printk("CPU%u: unable to kill\n", cpu);
217 }
218 
219 /*
220  * Called from the idle thread for the CPU which has been shutdown.
221  *
222  * Note that we disable IRQs here, but do not re-enable them
223  * before returning to the caller. This is also the behaviour
224  * of the other hotplug-cpu capable cores, so presumably coming
225  * out of idle fixes this.
226  */
227 void __cpuexit cpu_die(void)
228 {
229 	unsigned int cpu = smp_processor_id();
230 
231 	local_irq_disable();
232 	idle_task_exit();
233 
234 	/*
235 	 * actual CPU shutdown procedure is at least platform (if not
236 	 * CPU) specific
237 	 */
238 	platform_cpu_die(cpu);
239 
240 	/*
241 	 * Do not return to the idle loop - jump back to the secondary
242 	 * cpu initialisation.  There's some initialisation which needs
243 	 * to be repeated to undo the effects of taking the CPU offline.
244 	 */
245 	__asm__("mov	sp, %0\n"
246 	"	b	secondary_start_kernel"
247 		:
248 		: "r" ((void *)current->thread_info + THREAD_SIZE - 8));
249 }
250 #endif /* CONFIG_HOTPLUG_CPU */
251 
252 /*
253  * This is the secondary CPU boot entry.  We're using this CPUs
254  * idle thread stack, but a set of temporary page tables.
255  */
256 asmlinkage void __cpuinit secondary_start_kernel(void)
257 {
258 	struct mm_struct *mm = &init_mm;
259 	unsigned int cpu = smp_processor_id();
260 
261 	printk("CPU%u: Booted secondary processor\n", cpu);
262 
263 	/*
264 	 * All kernel threads share the same mm context; grab a
265 	 * reference and switch to it.
266 	 */
267 	atomic_inc(&mm->mm_users);
268 	atomic_inc(&mm->mm_count);
269 	current->active_mm = mm;
270 	cpu_set(cpu, mm->cpu_vm_mask);
271 	cpu_switch_mm(mm->pgd, mm);
272 	enter_lazy_tlb(mm, current);
273 	local_flush_tlb_all();
274 
275 	cpu_init();
276 	preempt_disable();
277 
278 	/*
279 	 * Give the platform a chance to do its own initialisation.
280 	 */
281 	platform_secondary_init(cpu);
282 
283 	/*
284 	 * Enable local interrupts.
285 	 */
286 	local_irq_enable();
287 	local_fiq_enable();
288 
289 	calibrate_delay();
290 
291 	smp_store_cpu_info(cpu);
292 
293 	/*
294 	 * OK, now it's safe to let the boot CPU continue
295 	 */
296 	cpu_set(cpu, cpu_online_map);
297 
298 	/*
299 	 * Setup local timer for this CPU.
300 	 */
301 	local_timer_setup(cpu);
302 
303 	/*
304 	 * OK, it's off to the idle thread for us
305 	 */
306 	cpu_idle();
307 }
308 
309 /*
310  * Called by both boot and secondaries to move global data into
311  * per-processor storage.
312  */
313 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
314 {
315 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
316 
317 	cpu_info->loops_per_jiffy = loops_per_jiffy;
318 }
319 
320 void __init smp_cpus_done(unsigned int max_cpus)
321 {
322 	int cpu;
323 	unsigned long bogosum = 0;
324 
325 	for_each_online_cpu(cpu)
326 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
327 
328 	printk(KERN_INFO "SMP: Total of %d processors activated "
329 	       "(%lu.%02lu BogoMIPS).\n",
330 	       num_online_cpus(),
331 	       bogosum / (500000/HZ),
332 	       (bogosum / (5000/HZ)) % 100);
333 }
334 
335 void __init smp_prepare_boot_cpu(void)
336 {
337 	unsigned int cpu = smp_processor_id();
338 
339 	per_cpu(cpu_data, cpu).idle = current;
340 
341 	cpu_set(cpu, cpu_possible_map);
342 	cpu_set(cpu, cpu_present_map);
343 	cpu_set(cpu, cpu_online_map);
344 }
345 
346 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
347 {
348 	unsigned long flags;
349 	unsigned int cpu;
350 
351 	local_irq_save(flags);
352 
353 	for_each_cpu_mask(cpu, callmap) {
354 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
355 
356 		spin_lock(&ipi->lock);
357 		ipi->bits |= 1 << msg;
358 		spin_unlock(&ipi->lock);
359 	}
360 
361 	/*
362 	 * Call the platform specific cross-CPU call function.
363 	 */
364 	smp_cross_call(callmap);
365 
366 	local_irq_restore(flags);
367 }
368 
369 /*
370  * You must not call this function with disabled interrupts, from a
371  * hardware interrupt handler, nor from a bottom half handler.
372  */
373 static int smp_call_function_on_cpu(void (*func)(void *info), void *info,
374 				    int retry, int wait, cpumask_t callmap)
375 {
376 	struct smp_call_struct data;
377 	unsigned long timeout;
378 	int ret = 0;
379 
380 	data.func = func;
381 	data.info = info;
382 	data.wait = wait;
383 
384 	cpu_clear(smp_processor_id(), callmap);
385 	if (cpus_empty(callmap))
386 		goto out;
387 
388 	data.pending = callmap;
389 	if (wait)
390 		data.unfinished = callmap;
391 
392 	/*
393 	 * try to get the mutex on smp_call_function_data
394 	 */
395 	spin_lock(&smp_call_function_lock);
396 	smp_call_function_data = &data;
397 
398 	send_ipi_message(callmap, IPI_CALL_FUNC);
399 
400 	timeout = jiffies + HZ;
401 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
402 		barrier();
403 
404 	/*
405 	 * did we time out?
406 	 */
407 	if (!cpus_empty(data.pending)) {
408 		/*
409 		 * this may be causing our panic - report it
410 		 */
411 		printk(KERN_CRIT
412 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
413 		       "      callmap %lx pending %lx, %swait\n",
414 		       smp_processor_id(), func, info, *cpus_addr(callmap),
415 		       *cpus_addr(data.pending), wait ? "" : "no ");
416 
417 		/*
418 		 * TRACE
419 		 */
420 		timeout = jiffies + (5 * HZ);
421 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
422 			barrier();
423 
424 		if (cpus_empty(data.pending))
425 			printk(KERN_CRIT "     RESOLVED\n");
426 		else
427 			printk(KERN_CRIT "     STILL STUCK\n");
428 	}
429 
430 	/*
431 	 * whatever happened, we're done with the data, so release it
432 	 */
433 	smp_call_function_data = NULL;
434 	spin_unlock(&smp_call_function_lock);
435 
436 	if (!cpus_empty(data.pending)) {
437 		ret = -ETIMEDOUT;
438 		goto out;
439 	}
440 
441 	if (wait)
442 		while (!cpus_empty(data.unfinished))
443 			barrier();
444  out:
445 
446 	return 0;
447 }
448 
449 int smp_call_function(void (*func)(void *info), void *info, int retry,
450                       int wait)
451 {
452 	return smp_call_function_on_cpu(func, info, retry, wait,
453 					cpu_online_map);
454 }
455 
456 void show_ipi_list(struct seq_file *p)
457 {
458 	unsigned int cpu;
459 
460 	seq_puts(p, "IPI:");
461 
462 	for_each_present_cpu(cpu)
463 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
464 
465 	seq_putc(p, '\n');
466 }
467 
468 void show_local_irqs(struct seq_file *p)
469 {
470 	unsigned int cpu;
471 
472 	seq_printf(p, "LOC: ");
473 
474 	for_each_present_cpu(cpu)
475 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
476 
477 	seq_putc(p, '\n');
478 }
479 
480 static void ipi_timer(struct pt_regs *regs)
481 {
482 	int user = user_mode(regs);
483 
484 	irq_enter();
485 	profile_tick(CPU_PROFILING, regs);
486 	update_process_times(user);
487 	irq_exit();
488 }
489 
490 #ifdef CONFIG_LOCAL_TIMERS
491 asmlinkage void do_local_timer(struct pt_regs *regs)
492 {
493 	int cpu = smp_processor_id();
494 
495 	if (local_timer_ack()) {
496 		irq_stat[cpu].local_timer_irqs++;
497 		ipi_timer(regs);
498 	}
499 }
500 #endif
501 
502 /*
503  * ipi_call_function - handle IPI from smp_call_function()
504  *
505  * Note that we copy data out of the cross-call structure and then
506  * let the caller know that we're here and have done with their data
507  */
508 static void ipi_call_function(unsigned int cpu)
509 {
510 	struct smp_call_struct *data = smp_call_function_data;
511 	void (*func)(void *info) = data->func;
512 	void *info = data->info;
513 	int wait = data->wait;
514 
515 	cpu_clear(cpu, data->pending);
516 
517 	func(info);
518 
519 	if (wait)
520 		cpu_clear(cpu, data->unfinished);
521 }
522 
523 static DEFINE_SPINLOCK(stop_lock);
524 
525 /*
526  * ipi_cpu_stop - handle IPI from smp_send_stop()
527  */
528 static void ipi_cpu_stop(unsigned int cpu)
529 {
530 	spin_lock(&stop_lock);
531 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
532 	dump_stack();
533 	spin_unlock(&stop_lock);
534 
535 	cpu_clear(cpu, cpu_online_map);
536 
537 	local_fiq_disable();
538 	local_irq_disable();
539 
540 	while (1)
541 		cpu_relax();
542 }
543 
544 /*
545  * Main handler for inter-processor interrupts
546  *
547  * For ARM, the ipimask now only identifies a single
548  * category of IPI (Bit 1 IPIs have been replaced by a
549  * different mechanism):
550  *
551  *  Bit 0 - Inter-processor function call
552  */
553 asmlinkage void do_IPI(struct pt_regs *regs)
554 {
555 	unsigned int cpu = smp_processor_id();
556 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
557 
558 	ipi->ipi_count++;
559 
560 	for (;;) {
561 		unsigned long msgs;
562 
563 		spin_lock(&ipi->lock);
564 		msgs = ipi->bits;
565 		ipi->bits = 0;
566 		spin_unlock(&ipi->lock);
567 
568 		if (!msgs)
569 			break;
570 
571 		do {
572 			unsigned nextmsg;
573 
574 			nextmsg = msgs & -msgs;
575 			msgs &= ~nextmsg;
576 			nextmsg = ffz(~nextmsg);
577 
578 			switch (nextmsg) {
579 			case IPI_TIMER:
580 				ipi_timer(regs);
581 				break;
582 
583 			case IPI_RESCHEDULE:
584 				/*
585 				 * nothing more to do - eveything is
586 				 * done on the interrupt return path
587 				 */
588 				break;
589 
590 			case IPI_CALL_FUNC:
591 				ipi_call_function(cpu);
592 				break;
593 
594 			case IPI_CPU_STOP:
595 				ipi_cpu_stop(cpu);
596 				break;
597 
598 			default:
599 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
600 				       cpu, nextmsg);
601 				break;
602 			}
603 		} while (msgs);
604 	}
605 }
606 
607 void smp_send_reschedule(int cpu)
608 {
609 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
610 }
611 
612 void smp_send_timer(void)
613 {
614 	cpumask_t mask = cpu_online_map;
615 	cpu_clear(smp_processor_id(), mask);
616 	send_ipi_message(mask, IPI_TIMER);
617 }
618 
619 void smp_send_stop(void)
620 {
621 	cpumask_t mask = cpu_online_map;
622 	cpu_clear(smp_processor_id(), mask);
623 	send_ipi_message(mask, IPI_CPU_STOP);
624 }
625 
626 /*
627  * not supported here
628  */
629 int __init setup_profiling_timer(unsigned int multiplier)
630 {
631 	return -EINVAL;
632 }
633 
634 static int
635 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
636 		 cpumask_t mask)
637 {
638 	int ret = 0;
639 
640 	preempt_disable();
641 
642 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
643 	if (cpu_isset(smp_processor_id(), mask))
644 		func(info);
645 
646 	preempt_enable();
647 
648 	return ret;
649 }
650 
651 /**********************************************************************/
652 
653 /*
654  * TLB operations
655  */
656 struct tlb_args {
657 	struct vm_area_struct *ta_vma;
658 	unsigned long ta_start;
659 	unsigned long ta_end;
660 };
661 
662 static inline void ipi_flush_tlb_all(void *ignored)
663 {
664 	local_flush_tlb_all();
665 }
666 
667 static inline void ipi_flush_tlb_mm(void *arg)
668 {
669 	struct mm_struct *mm = (struct mm_struct *)arg;
670 
671 	local_flush_tlb_mm(mm);
672 }
673 
674 static inline void ipi_flush_tlb_page(void *arg)
675 {
676 	struct tlb_args *ta = (struct tlb_args *)arg;
677 
678 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
679 }
680 
681 static inline void ipi_flush_tlb_kernel_page(void *arg)
682 {
683 	struct tlb_args *ta = (struct tlb_args *)arg;
684 
685 	local_flush_tlb_kernel_page(ta->ta_start);
686 }
687 
688 static inline void ipi_flush_tlb_range(void *arg)
689 {
690 	struct tlb_args *ta = (struct tlb_args *)arg;
691 
692 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
693 }
694 
695 static inline void ipi_flush_tlb_kernel_range(void *arg)
696 {
697 	struct tlb_args *ta = (struct tlb_args *)arg;
698 
699 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
700 }
701 
702 void flush_tlb_all(void)
703 {
704 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
705 }
706 
707 void flush_tlb_mm(struct mm_struct *mm)
708 {
709 	cpumask_t mask = mm->cpu_vm_mask;
710 
711 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
712 }
713 
714 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
715 {
716 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
717 	struct tlb_args ta;
718 
719 	ta.ta_vma = vma;
720 	ta.ta_start = uaddr;
721 
722 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
723 }
724 
725 void flush_tlb_kernel_page(unsigned long kaddr)
726 {
727 	struct tlb_args ta;
728 
729 	ta.ta_start = kaddr;
730 
731 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
732 }
733 
734 void flush_tlb_range(struct vm_area_struct *vma,
735                      unsigned long start, unsigned long end)
736 {
737 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
738 	struct tlb_args ta;
739 
740 	ta.ta_vma = vma;
741 	ta.ta_start = start;
742 	ta.ta_end = end;
743 
744 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
745 }
746 
747 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
748 {
749 	struct tlb_args ta;
750 
751 	ta.ta_start = start;
752 	ta.ta_end = end;
753 
754 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
755 }
756