1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/config.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/cpu.h> 21 #include <linux/smp.h> 22 #include <linux/seq_file.h> 23 24 #include <asm/atomic.h> 25 #include <asm/cacheflush.h> 26 #include <asm/cpu.h> 27 #include <asm/mmu_context.h> 28 #include <asm/pgtable.h> 29 #include <asm/pgalloc.h> 30 #include <asm/processor.h> 31 #include <asm/tlbflush.h> 32 #include <asm/ptrace.h> 33 34 /* 35 * bitmask of present and online CPUs. 36 * The present bitmask indicates that the CPU is physically present. 37 * The online bitmask indicates that the CPU is up and running. 38 */ 39 cpumask_t cpu_possible_map; 40 cpumask_t cpu_online_map; 41 42 /* 43 * as from 2.5, kernels no longer have an init_tasks structure 44 * so we need some other way of telling a new secondary core 45 * where to place its SVC stack 46 */ 47 struct secondary_data secondary_data; 48 49 /* 50 * structures for inter-processor calls 51 * - A collection of single bit ipi messages. 52 */ 53 struct ipi_data { 54 spinlock_t lock; 55 unsigned long ipi_count; 56 unsigned long bits; 57 }; 58 59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 60 .lock = SPIN_LOCK_UNLOCKED, 61 }; 62 63 enum ipi_msg_type { 64 IPI_TIMER, 65 IPI_RESCHEDULE, 66 IPI_CALL_FUNC, 67 IPI_CPU_STOP, 68 }; 69 70 struct smp_call_struct { 71 void (*func)(void *info); 72 void *info; 73 int wait; 74 cpumask_t pending; 75 cpumask_t unfinished; 76 }; 77 78 static struct smp_call_struct * volatile smp_call_function_data; 79 static DEFINE_SPINLOCK(smp_call_function_lock); 80 81 int __cpuinit __cpu_up(unsigned int cpu) 82 { 83 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 84 struct task_struct *idle = ci->idle; 85 pgd_t *pgd; 86 pmd_t *pmd; 87 int ret; 88 89 /* 90 * Spawn a new process manually, if not already done. 91 * Grab a pointer to its task struct so we can mess with it 92 */ 93 if (!idle) { 94 idle = fork_idle(cpu); 95 if (IS_ERR(idle)) { 96 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 97 return PTR_ERR(idle); 98 } 99 ci->idle = idle; 100 } 101 102 /* 103 * Allocate initial page tables to allow the new CPU to 104 * enable the MMU safely. This essentially means a set 105 * of our "standard" page tables, with the addition of 106 * a 1:1 mapping for the physical address of the kernel. 107 */ 108 pgd = pgd_alloc(&init_mm); 109 pmd = pmd_offset(pgd, PHYS_OFFSET); 110 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 111 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 112 113 /* 114 * We need to tell the secondary core where to find 115 * its stack and the page tables. 116 */ 117 secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP; 118 secondary_data.pgdir = virt_to_phys(pgd); 119 wmb(); 120 121 /* 122 * Now bring the CPU into our world. 123 */ 124 ret = boot_secondary(cpu, idle); 125 if (ret == 0) { 126 unsigned long timeout; 127 128 /* 129 * CPU was successfully started, wait for it 130 * to come online or time out. 131 */ 132 timeout = jiffies + HZ; 133 while (time_before(jiffies, timeout)) { 134 if (cpu_online(cpu)) 135 break; 136 137 udelay(10); 138 barrier(); 139 } 140 141 if (!cpu_online(cpu)) 142 ret = -EIO; 143 } 144 145 secondary_data.stack = NULL; 146 secondary_data.pgdir = 0; 147 148 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 149 pgd_free(pgd); 150 151 if (ret) { 152 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 153 154 /* 155 * FIXME: We need to clean up the new idle thread. --rmk 156 */ 157 } 158 159 return ret; 160 } 161 162 #ifdef CONFIG_HOTPLUG_CPU 163 /* 164 * __cpu_disable runs on the processor to be shutdown. 165 */ 166 int __cpuexit __cpu_disable(void) 167 { 168 unsigned int cpu = smp_processor_id(); 169 struct task_struct *p; 170 int ret; 171 172 ret = mach_cpu_disable(cpu); 173 if (ret) 174 return ret; 175 176 /* 177 * Take this CPU offline. Once we clear this, we can't return, 178 * and we must not schedule until we're ready to give up the cpu. 179 */ 180 cpu_clear(cpu, cpu_online_map); 181 182 /* 183 * OK - migrate IRQs away from this CPU 184 */ 185 migrate_irqs(); 186 187 /* 188 * Stop the local timer for this CPU. 189 */ 190 local_timer_stop(cpu); 191 192 /* 193 * Flush user cache and TLB mappings, and then remove this CPU 194 * from the vm mask set of all processes. 195 */ 196 flush_cache_all(); 197 local_flush_tlb_all(); 198 199 read_lock(&tasklist_lock); 200 for_each_process(p) { 201 if (p->mm) 202 cpu_clear(cpu, p->mm->cpu_vm_mask); 203 } 204 read_unlock(&tasklist_lock); 205 206 return 0; 207 } 208 209 /* 210 * called on the thread which is asking for a CPU to be shutdown - 211 * waits until shutdown has completed, or it is timed out. 212 */ 213 void __cpuexit __cpu_die(unsigned int cpu) 214 { 215 if (!platform_cpu_kill(cpu)) 216 printk("CPU%u: unable to kill\n", cpu); 217 } 218 219 /* 220 * Called from the idle thread for the CPU which has been shutdown. 221 * 222 * Note that we disable IRQs here, but do not re-enable them 223 * before returning to the caller. This is also the behaviour 224 * of the other hotplug-cpu capable cores, so presumably coming 225 * out of idle fixes this. 226 */ 227 void __cpuexit cpu_die(void) 228 { 229 unsigned int cpu = smp_processor_id(); 230 231 local_irq_disable(); 232 idle_task_exit(); 233 234 /* 235 * actual CPU shutdown procedure is at least platform (if not 236 * CPU) specific 237 */ 238 platform_cpu_die(cpu); 239 240 /* 241 * Do not return to the idle loop - jump back to the secondary 242 * cpu initialisation. There's some initialisation which needs 243 * to be repeated to undo the effects of taking the CPU offline. 244 */ 245 __asm__("mov sp, %0\n" 246 " b secondary_start_kernel" 247 : 248 : "r" ((void *)current->thread_info + THREAD_SIZE - 8)); 249 } 250 #endif /* CONFIG_HOTPLUG_CPU */ 251 252 /* 253 * This is the secondary CPU boot entry. We're using this CPUs 254 * idle thread stack, but a set of temporary page tables. 255 */ 256 asmlinkage void __cpuinit secondary_start_kernel(void) 257 { 258 struct mm_struct *mm = &init_mm; 259 unsigned int cpu = smp_processor_id(); 260 261 printk("CPU%u: Booted secondary processor\n", cpu); 262 263 /* 264 * All kernel threads share the same mm context; grab a 265 * reference and switch to it. 266 */ 267 atomic_inc(&mm->mm_users); 268 atomic_inc(&mm->mm_count); 269 current->active_mm = mm; 270 cpu_set(cpu, mm->cpu_vm_mask); 271 cpu_switch_mm(mm->pgd, mm); 272 enter_lazy_tlb(mm, current); 273 local_flush_tlb_all(); 274 275 cpu_init(); 276 preempt_disable(); 277 278 /* 279 * Give the platform a chance to do its own initialisation. 280 */ 281 platform_secondary_init(cpu); 282 283 /* 284 * Enable local interrupts. 285 */ 286 local_irq_enable(); 287 local_fiq_enable(); 288 289 calibrate_delay(); 290 291 smp_store_cpu_info(cpu); 292 293 /* 294 * OK, now it's safe to let the boot CPU continue 295 */ 296 cpu_set(cpu, cpu_online_map); 297 298 /* 299 * Setup local timer for this CPU. 300 */ 301 local_timer_setup(cpu); 302 303 /* 304 * OK, it's off to the idle thread for us 305 */ 306 cpu_idle(); 307 } 308 309 /* 310 * Called by both boot and secondaries to move global data into 311 * per-processor storage. 312 */ 313 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 314 { 315 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 316 317 cpu_info->loops_per_jiffy = loops_per_jiffy; 318 } 319 320 void __init smp_cpus_done(unsigned int max_cpus) 321 { 322 int cpu; 323 unsigned long bogosum = 0; 324 325 for_each_online_cpu(cpu) 326 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 327 328 printk(KERN_INFO "SMP: Total of %d processors activated " 329 "(%lu.%02lu BogoMIPS).\n", 330 num_online_cpus(), 331 bogosum / (500000/HZ), 332 (bogosum / (5000/HZ)) % 100); 333 } 334 335 void __init smp_prepare_boot_cpu(void) 336 { 337 unsigned int cpu = smp_processor_id(); 338 339 per_cpu(cpu_data, cpu).idle = current; 340 341 cpu_set(cpu, cpu_possible_map); 342 cpu_set(cpu, cpu_present_map); 343 cpu_set(cpu, cpu_online_map); 344 } 345 346 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 347 { 348 unsigned long flags; 349 unsigned int cpu; 350 351 local_irq_save(flags); 352 353 for_each_cpu_mask(cpu, callmap) { 354 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 355 356 spin_lock(&ipi->lock); 357 ipi->bits |= 1 << msg; 358 spin_unlock(&ipi->lock); 359 } 360 361 /* 362 * Call the platform specific cross-CPU call function. 363 */ 364 smp_cross_call(callmap); 365 366 local_irq_restore(flags); 367 } 368 369 /* 370 * You must not call this function with disabled interrupts, from a 371 * hardware interrupt handler, nor from a bottom half handler. 372 */ 373 static int smp_call_function_on_cpu(void (*func)(void *info), void *info, 374 int retry, int wait, cpumask_t callmap) 375 { 376 struct smp_call_struct data; 377 unsigned long timeout; 378 int ret = 0; 379 380 data.func = func; 381 data.info = info; 382 data.wait = wait; 383 384 cpu_clear(smp_processor_id(), callmap); 385 if (cpus_empty(callmap)) 386 goto out; 387 388 data.pending = callmap; 389 if (wait) 390 data.unfinished = callmap; 391 392 /* 393 * try to get the mutex on smp_call_function_data 394 */ 395 spin_lock(&smp_call_function_lock); 396 smp_call_function_data = &data; 397 398 send_ipi_message(callmap, IPI_CALL_FUNC); 399 400 timeout = jiffies + HZ; 401 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 402 barrier(); 403 404 /* 405 * did we time out? 406 */ 407 if (!cpus_empty(data.pending)) { 408 /* 409 * this may be causing our panic - report it 410 */ 411 printk(KERN_CRIT 412 "CPU%u: smp_call_function timeout for %p(%p)\n" 413 " callmap %lx pending %lx, %swait\n", 414 smp_processor_id(), func, info, *cpus_addr(callmap), 415 *cpus_addr(data.pending), wait ? "" : "no "); 416 417 /* 418 * TRACE 419 */ 420 timeout = jiffies + (5 * HZ); 421 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 422 barrier(); 423 424 if (cpus_empty(data.pending)) 425 printk(KERN_CRIT " RESOLVED\n"); 426 else 427 printk(KERN_CRIT " STILL STUCK\n"); 428 } 429 430 /* 431 * whatever happened, we're done with the data, so release it 432 */ 433 smp_call_function_data = NULL; 434 spin_unlock(&smp_call_function_lock); 435 436 if (!cpus_empty(data.pending)) { 437 ret = -ETIMEDOUT; 438 goto out; 439 } 440 441 if (wait) 442 while (!cpus_empty(data.unfinished)) 443 barrier(); 444 out: 445 446 return 0; 447 } 448 449 int smp_call_function(void (*func)(void *info), void *info, int retry, 450 int wait) 451 { 452 return smp_call_function_on_cpu(func, info, retry, wait, 453 cpu_online_map); 454 } 455 456 void show_ipi_list(struct seq_file *p) 457 { 458 unsigned int cpu; 459 460 seq_puts(p, "IPI:"); 461 462 for_each_present_cpu(cpu) 463 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 464 465 seq_putc(p, '\n'); 466 } 467 468 void show_local_irqs(struct seq_file *p) 469 { 470 unsigned int cpu; 471 472 seq_printf(p, "LOC: "); 473 474 for_each_present_cpu(cpu) 475 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 476 477 seq_putc(p, '\n'); 478 } 479 480 static void ipi_timer(struct pt_regs *regs) 481 { 482 int user = user_mode(regs); 483 484 irq_enter(); 485 profile_tick(CPU_PROFILING, regs); 486 update_process_times(user); 487 irq_exit(); 488 } 489 490 #ifdef CONFIG_LOCAL_TIMERS 491 asmlinkage void do_local_timer(struct pt_regs *regs) 492 { 493 int cpu = smp_processor_id(); 494 495 if (local_timer_ack()) { 496 irq_stat[cpu].local_timer_irqs++; 497 ipi_timer(regs); 498 } 499 } 500 #endif 501 502 /* 503 * ipi_call_function - handle IPI from smp_call_function() 504 * 505 * Note that we copy data out of the cross-call structure and then 506 * let the caller know that we're here and have done with their data 507 */ 508 static void ipi_call_function(unsigned int cpu) 509 { 510 struct smp_call_struct *data = smp_call_function_data; 511 void (*func)(void *info) = data->func; 512 void *info = data->info; 513 int wait = data->wait; 514 515 cpu_clear(cpu, data->pending); 516 517 func(info); 518 519 if (wait) 520 cpu_clear(cpu, data->unfinished); 521 } 522 523 static DEFINE_SPINLOCK(stop_lock); 524 525 /* 526 * ipi_cpu_stop - handle IPI from smp_send_stop() 527 */ 528 static void ipi_cpu_stop(unsigned int cpu) 529 { 530 spin_lock(&stop_lock); 531 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 532 dump_stack(); 533 spin_unlock(&stop_lock); 534 535 cpu_clear(cpu, cpu_online_map); 536 537 local_fiq_disable(); 538 local_irq_disable(); 539 540 while (1) 541 cpu_relax(); 542 } 543 544 /* 545 * Main handler for inter-processor interrupts 546 * 547 * For ARM, the ipimask now only identifies a single 548 * category of IPI (Bit 1 IPIs have been replaced by a 549 * different mechanism): 550 * 551 * Bit 0 - Inter-processor function call 552 */ 553 asmlinkage void do_IPI(struct pt_regs *regs) 554 { 555 unsigned int cpu = smp_processor_id(); 556 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 557 558 ipi->ipi_count++; 559 560 for (;;) { 561 unsigned long msgs; 562 563 spin_lock(&ipi->lock); 564 msgs = ipi->bits; 565 ipi->bits = 0; 566 spin_unlock(&ipi->lock); 567 568 if (!msgs) 569 break; 570 571 do { 572 unsigned nextmsg; 573 574 nextmsg = msgs & -msgs; 575 msgs &= ~nextmsg; 576 nextmsg = ffz(~nextmsg); 577 578 switch (nextmsg) { 579 case IPI_TIMER: 580 ipi_timer(regs); 581 break; 582 583 case IPI_RESCHEDULE: 584 /* 585 * nothing more to do - eveything is 586 * done on the interrupt return path 587 */ 588 break; 589 590 case IPI_CALL_FUNC: 591 ipi_call_function(cpu); 592 break; 593 594 case IPI_CPU_STOP: 595 ipi_cpu_stop(cpu); 596 break; 597 598 default: 599 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 600 cpu, nextmsg); 601 break; 602 } 603 } while (msgs); 604 } 605 } 606 607 void smp_send_reschedule(int cpu) 608 { 609 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 610 } 611 612 void smp_send_timer(void) 613 { 614 cpumask_t mask = cpu_online_map; 615 cpu_clear(smp_processor_id(), mask); 616 send_ipi_message(mask, IPI_TIMER); 617 } 618 619 void smp_send_stop(void) 620 { 621 cpumask_t mask = cpu_online_map; 622 cpu_clear(smp_processor_id(), mask); 623 send_ipi_message(mask, IPI_CPU_STOP); 624 } 625 626 /* 627 * not supported here 628 */ 629 int __init setup_profiling_timer(unsigned int multiplier) 630 { 631 return -EINVAL; 632 } 633 634 static int 635 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait, 636 cpumask_t mask) 637 { 638 int ret = 0; 639 640 preempt_disable(); 641 642 ret = smp_call_function_on_cpu(func, info, retry, wait, mask); 643 if (cpu_isset(smp_processor_id(), mask)) 644 func(info); 645 646 preempt_enable(); 647 648 return ret; 649 } 650 651 /**********************************************************************/ 652 653 /* 654 * TLB operations 655 */ 656 struct tlb_args { 657 struct vm_area_struct *ta_vma; 658 unsigned long ta_start; 659 unsigned long ta_end; 660 }; 661 662 static inline void ipi_flush_tlb_all(void *ignored) 663 { 664 local_flush_tlb_all(); 665 } 666 667 static inline void ipi_flush_tlb_mm(void *arg) 668 { 669 struct mm_struct *mm = (struct mm_struct *)arg; 670 671 local_flush_tlb_mm(mm); 672 } 673 674 static inline void ipi_flush_tlb_page(void *arg) 675 { 676 struct tlb_args *ta = (struct tlb_args *)arg; 677 678 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 679 } 680 681 static inline void ipi_flush_tlb_kernel_page(void *arg) 682 { 683 struct tlb_args *ta = (struct tlb_args *)arg; 684 685 local_flush_tlb_kernel_page(ta->ta_start); 686 } 687 688 static inline void ipi_flush_tlb_range(void *arg) 689 { 690 struct tlb_args *ta = (struct tlb_args *)arg; 691 692 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 693 } 694 695 static inline void ipi_flush_tlb_kernel_range(void *arg) 696 { 697 struct tlb_args *ta = (struct tlb_args *)arg; 698 699 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 700 } 701 702 void flush_tlb_all(void) 703 { 704 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1); 705 } 706 707 void flush_tlb_mm(struct mm_struct *mm) 708 { 709 cpumask_t mask = mm->cpu_vm_mask; 710 711 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask); 712 } 713 714 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 715 { 716 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 717 struct tlb_args ta; 718 719 ta.ta_vma = vma; 720 ta.ta_start = uaddr; 721 722 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask); 723 } 724 725 void flush_tlb_kernel_page(unsigned long kaddr) 726 { 727 struct tlb_args ta; 728 729 ta.ta_start = kaddr; 730 731 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1); 732 } 733 734 void flush_tlb_range(struct vm_area_struct *vma, 735 unsigned long start, unsigned long end) 736 { 737 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 738 struct tlb_args ta; 739 740 ta.ta_vma = vma; 741 ta.ta_start = start; 742 ta.ta_end = end; 743 744 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask); 745 } 746 747 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 748 { 749 struct tlb_args ta; 750 751 ta.ta_start = start; 752 ta.ta_end = end; 753 754 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1); 755 } 756