xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 858259cf)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/config.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23 
24 #include <asm/atomic.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cpu.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgtable.h>
29 #include <asm/pgalloc.h>
30 #include <asm/processor.h>
31 #include <asm/tlbflush.h>
32 #include <asm/ptrace.h>
33 
34 /*
35  * bitmask of present and online CPUs.
36  * The present bitmask indicates that the CPU is physically present.
37  * The online bitmask indicates that the CPU is up and running.
38  */
39 cpumask_t cpu_possible_map;
40 cpumask_t cpu_online_map;
41 
42 /*
43  * as from 2.5, kernels no longer have an init_tasks structure
44  * so we need some other way of telling a new secondary core
45  * where to place its SVC stack
46  */
47 struct secondary_data secondary_data;
48 
49 /*
50  * structures for inter-processor calls
51  * - A collection of single bit ipi messages.
52  */
53 struct ipi_data {
54 	spinlock_t lock;
55 	unsigned long ipi_count;
56 	unsigned long bits;
57 };
58 
59 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
60 	.lock	= SPIN_LOCK_UNLOCKED,
61 };
62 
63 enum ipi_msg_type {
64 	IPI_TIMER,
65 	IPI_RESCHEDULE,
66 	IPI_CALL_FUNC,
67 	IPI_CPU_STOP,
68 };
69 
70 struct smp_call_struct {
71 	void (*func)(void *info);
72 	void *info;
73 	int wait;
74 	cpumask_t pending;
75 	cpumask_t unfinished;
76 };
77 
78 static struct smp_call_struct * volatile smp_call_function_data;
79 static DEFINE_SPINLOCK(smp_call_function_lock);
80 
81 int __cpuinit __cpu_up(unsigned int cpu)
82 {
83 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
84 	struct task_struct *idle = ci->idle;
85 	pgd_t *pgd;
86 	pmd_t *pmd;
87 	int ret;
88 
89 	/*
90 	 * Spawn a new process manually, if not already done.
91 	 * Grab a pointer to its task struct so we can mess with it
92 	 */
93 	if (!idle) {
94 		idle = fork_idle(cpu);
95 		if (IS_ERR(idle)) {
96 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
97 			return PTR_ERR(idle);
98 		}
99 		ci->idle = idle;
100 	}
101 
102 	/*
103 	 * Allocate initial page tables to allow the new CPU to
104 	 * enable the MMU safely.  This essentially means a set
105 	 * of our "standard" page tables, with the addition of
106 	 * a 1:1 mapping for the physical address of the kernel.
107 	 */
108 	pgd = pgd_alloc(&init_mm);
109 	pmd = pmd_offset(pgd, PHYS_OFFSET);
110 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
111 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
112 
113 	/*
114 	 * We need to tell the secondary core where to find
115 	 * its stack and the page tables.
116 	 */
117 	secondary_data.stack = (void *)idle->thread_info + THREAD_START_SP;
118 	secondary_data.pgdir = virt_to_phys(pgd);
119 	wmb();
120 
121 	/*
122 	 * Now bring the CPU into our world.
123 	 */
124 	ret = boot_secondary(cpu, idle);
125 	if (ret == 0) {
126 		unsigned long timeout;
127 
128 		/*
129 		 * CPU was successfully started, wait for it
130 		 * to come online or time out.
131 		 */
132 		timeout = jiffies + HZ;
133 		while (time_before(jiffies, timeout)) {
134 			if (cpu_online(cpu))
135 				break;
136 
137 			udelay(10);
138 			barrier();
139 		}
140 
141 		if (!cpu_online(cpu))
142 			ret = -EIO;
143 	}
144 
145 	secondary_data.stack = 0;
146 	secondary_data.pgdir = 0;
147 
148 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
149 	pgd_free(pgd);
150 
151 	if (ret) {
152 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
153 
154 		/*
155 		 * FIXME: We need to clean up the new idle thread. --rmk
156 		 */
157 	}
158 
159 	return ret;
160 }
161 
162 #ifdef CONFIG_HOTPLUG_CPU
163 /*
164  * __cpu_disable runs on the processor to be shutdown.
165  */
166 int __cpuexit __cpu_disable(void)
167 {
168 	unsigned int cpu = smp_processor_id();
169 	struct task_struct *p;
170 	int ret;
171 
172 	ret = mach_cpu_disable(cpu);
173 	if (ret)
174 		return ret;
175 
176 	/*
177 	 * Take this CPU offline.  Once we clear this, we can't return,
178 	 * and we must not schedule until we're ready to give up the cpu.
179 	 */
180 	cpu_clear(cpu, cpu_online_map);
181 
182 	/*
183 	 * OK - migrate IRQs away from this CPU
184 	 */
185 	migrate_irqs();
186 
187 	/*
188 	 * Flush user cache and TLB mappings, and then remove this CPU
189 	 * from the vm mask set of all processes.
190 	 */
191 	flush_cache_all();
192 	local_flush_tlb_all();
193 
194 	read_lock(&tasklist_lock);
195 	for_each_process(p) {
196 		if (p->mm)
197 			cpu_clear(cpu, p->mm->cpu_vm_mask);
198 	}
199 	read_unlock(&tasklist_lock);
200 
201 	return 0;
202 }
203 
204 /*
205  * called on the thread which is asking for a CPU to be shutdown -
206  * waits until shutdown has completed, or it is timed out.
207  */
208 void __cpuexit __cpu_die(unsigned int cpu)
209 {
210 	if (!platform_cpu_kill(cpu))
211 		printk("CPU%u: unable to kill\n", cpu);
212 }
213 
214 /*
215  * Called from the idle thread for the CPU which has been shutdown.
216  *
217  * Note that we disable IRQs here, but do not re-enable them
218  * before returning to the caller. This is also the behaviour
219  * of the other hotplug-cpu capable cores, so presumably coming
220  * out of idle fixes this.
221  */
222 void __cpuexit cpu_die(void)
223 {
224 	unsigned int cpu = smp_processor_id();
225 
226 	local_irq_disable();
227 	idle_task_exit();
228 
229 	/*
230 	 * actual CPU shutdown procedure is at least platform (if not
231 	 * CPU) specific
232 	 */
233 	platform_cpu_die(cpu);
234 
235 	/*
236 	 * Do not return to the idle loop - jump back to the secondary
237 	 * cpu initialisation.  There's some initialisation which needs
238 	 * to be repeated to undo the effects of taking the CPU offline.
239 	 */
240 	__asm__("mov	sp, %0\n"
241 	"	b	secondary_start_kernel"
242 		:
243 		: "r" ((void *)current->thread_info + THREAD_SIZE - 8));
244 }
245 #endif /* CONFIG_HOTPLUG_CPU */
246 
247 /*
248  * This is the secondary CPU boot entry.  We're using this CPUs
249  * idle thread stack, but a set of temporary page tables.
250  */
251 asmlinkage void __cpuinit secondary_start_kernel(void)
252 {
253 	struct mm_struct *mm = &init_mm;
254 	unsigned int cpu = smp_processor_id();
255 
256 	printk("CPU%u: Booted secondary processor\n", cpu);
257 
258 	/*
259 	 * All kernel threads share the same mm context; grab a
260 	 * reference and switch to it.
261 	 */
262 	atomic_inc(&mm->mm_users);
263 	atomic_inc(&mm->mm_count);
264 	current->active_mm = mm;
265 	cpu_set(cpu, mm->cpu_vm_mask);
266 	cpu_switch_mm(mm->pgd, mm);
267 	enter_lazy_tlb(mm, current);
268 	local_flush_tlb_all();
269 
270 	cpu_init();
271 
272 	/*
273 	 * Give the platform a chance to do its own initialisation.
274 	 */
275 	platform_secondary_init(cpu);
276 
277 	/*
278 	 * Enable local interrupts.
279 	 */
280 	local_irq_enable();
281 	local_fiq_enable();
282 
283 	calibrate_delay();
284 
285 	smp_store_cpu_info(cpu);
286 
287 	/*
288 	 * OK, now it's safe to let the boot CPU continue
289 	 */
290 	cpu_set(cpu, cpu_online_map);
291 
292 	/*
293 	 * OK, it's off to the idle thread for us
294 	 */
295 	cpu_idle();
296 }
297 
298 /*
299  * Called by both boot and secondaries to move global data into
300  * per-processor storage.
301  */
302 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
303 {
304 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
305 
306 	cpu_info->loops_per_jiffy = loops_per_jiffy;
307 }
308 
309 void __init smp_cpus_done(unsigned int max_cpus)
310 {
311 	int cpu;
312 	unsigned long bogosum = 0;
313 
314 	for_each_online_cpu(cpu)
315 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
316 
317 	printk(KERN_INFO "SMP: Total of %d processors activated "
318 	       "(%lu.%02lu BogoMIPS).\n",
319 	       num_online_cpus(),
320 	       bogosum / (500000/HZ),
321 	       (bogosum / (5000/HZ)) % 100);
322 }
323 
324 void __init smp_prepare_boot_cpu(void)
325 {
326 	unsigned int cpu = smp_processor_id();
327 
328 	per_cpu(cpu_data, cpu).idle = current;
329 
330 	cpu_set(cpu, cpu_possible_map);
331 	cpu_set(cpu, cpu_present_map);
332 	cpu_set(cpu, cpu_online_map);
333 }
334 
335 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
336 {
337 	unsigned long flags;
338 	unsigned int cpu;
339 
340 	local_irq_save(flags);
341 
342 	for_each_cpu_mask(cpu, callmap) {
343 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
344 
345 		spin_lock(&ipi->lock);
346 		ipi->bits |= 1 << msg;
347 		spin_unlock(&ipi->lock);
348 	}
349 
350 	/*
351 	 * Call the platform specific cross-CPU call function.
352 	 */
353 	smp_cross_call(callmap);
354 
355 	local_irq_restore(flags);
356 }
357 
358 /*
359  * You must not call this function with disabled interrupts, from a
360  * hardware interrupt handler, nor from a bottom half handler.
361  */
362 int smp_call_function_on_cpu(void (*func)(void *info), void *info, int retry,
363                              int wait, cpumask_t callmap)
364 {
365 	struct smp_call_struct data;
366 	unsigned long timeout;
367 	int ret = 0;
368 
369 	data.func = func;
370 	data.info = info;
371 	data.wait = wait;
372 
373 	cpu_clear(smp_processor_id(), callmap);
374 	if (cpus_empty(callmap))
375 		goto out;
376 
377 	data.pending = callmap;
378 	if (wait)
379 		data.unfinished = callmap;
380 
381 	/*
382 	 * try to get the mutex on smp_call_function_data
383 	 */
384 	spin_lock(&smp_call_function_lock);
385 	smp_call_function_data = &data;
386 
387 	send_ipi_message(callmap, IPI_CALL_FUNC);
388 
389 	timeout = jiffies + HZ;
390 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
391 		barrier();
392 
393 	/*
394 	 * did we time out?
395 	 */
396 	if (!cpus_empty(data.pending)) {
397 		/*
398 		 * this may be causing our panic - report it
399 		 */
400 		printk(KERN_CRIT
401 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
402 		       "      callmap %lx pending %lx, %swait\n",
403 		       smp_processor_id(), func, info, *cpus_addr(callmap),
404 		       *cpus_addr(data.pending), wait ? "" : "no ");
405 
406 		/*
407 		 * TRACE
408 		 */
409 		timeout = jiffies + (5 * HZ);
410 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
411 			barrier();
412 
413 		if (cpus_empty(data.pending))
414 			printk(KERN_CRIT "     RESOLVED\n");
415 		else
416 			printk(KERN_CRIT "     STILL STUCK\n");
417 	}
418 
419 	/*
420 	 * whatever happened, we're done with the data, so release it
421 	 */
422 	smp_call_function_data = NULL;
423 	spin_unlock(&smp_call_function_lock);
424 
425 	if (!cpus_empty(data.pending)) {
426 		ret = -ETIMEDOUT;
427 		goto out;
428 	}
429 
430 	if (wait)
431 		while (!cpus_empty(data.unfinished))
432 			barrier();
433  out:
434 
435 	return 0;
436 }
437 
438 int smp_call_function(void (*func)(void *info), void *info, int retry,
439                       int wait)
440 {
441 	return smp_call_function_on_cpu(func, info, retry, wait,
442 					cpu_online_map);
443 }
444 
445 void show_ipi_list(struct seq_file *p)
446 {
447 	unsigned int cpu;
448 
449 	seq_puts(p, "IPI:");
450 
451 	for_each_present_cpu(cpu)
452 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
453 
454 	seq_putc(p, '\n');
455 }
456 
457 static void ipi_timer(struct pt_regs *regs)
458 {
459 	int user = user_mode(regs);
460 
461 	irq_enter();
462 	profile_tick(CPU_PROFILING, regs);
463 	update_process_times(user);
464 	irq_exit();
465 }
466 
467 /*
468  * ipi_call_function - handle IPI from smp_call_function()
469  *
470  * Note that we copy data out of the cross-call structure and then
471  * let the caller know that we're here and have done with their data
472  */
473 static void ipi_call_function(unsigned int cpu)
474 {
475 	struct smp_call_struct *data = smp_call_function_data;
476 	void (*func)(void *info) = data->func;
477 	void *info = data->info;
478 	int wait = data->wait;
479 
480 	cpu_clear(cpu, data->pending);
481 
482 	func(info);
483 
484 	if (wait)
485 		cpu_clear(cpu, data->unfinished);
486 }
487 
488 static DEFINE_SPINLOCK(stop_lock);
489 
490 /*
491  * ipi_cpu_stop - handle IPI from smp_send_stop()
492  */
493 static void ipi_cpu_stop(unsigned int cpu)
494 {
495 	spin_lock(&stop_lock);
496 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
497 	dump_stack();
498 	spin_unlock(&stop_lock);
499 
500 	cpu_clear(cpu, cpu_online_map);
501 
502 	local_fiq_disable();
503 	local_irq_disable();
504 
505 	while (1)
506 		cpu_relax();
507 }
508 
509 /*
510  * Main handler for inter-processor interrupts
511  *
512  * For ARM, the ipimask now only identifies a single
513  * category of IPI (Bit 1 IPIs have been replaced by a
514  * different mechanism):
515  *
516  *  Bit 0 - Inter-processor function call
517  */
518 void do_IPI(struct pt_regs *regs)
519 {
520 	unsigned int cpu = smp_processor_id();
521 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
522 
523 	ipi->ipi_count++;
524 
525 	for (;;) {
526 		unsigned long msgs;
527 
528 		spin_lock(&ipi->lock);
529 		msgs = ipi->bits;
530 		ipi->bits = 0;
531 		spin_unlock(&ipi->lock);
532 
533 		if (!msgs)
534 			break;
535 
536 		do {
537 			unsigned nextmsg;
538 
539 			nextmsg = msgs & -msgs;
540 			msgs &= ~nextmsg;
541 			nextmsg = ffz(~nextmsg);
542 
543 			switch (nextmsg) {
544 			case IPI_TIMER:
545 				ipi_timer(regs);
546 				break;
547 
548 			case IPI_RESCHEDULE:
549 				/*
550 				 * nothing more to do - eveything is
551 				 * done on the interrupt return path
552 				 */
553 				break;
554 
555 			case IPI_CALL_FUNC:
556 				ipi_call_function(cpu);
557 				break;
558 
559 			case IPI_CPU_STOP:
560 				ipi_cpu_stop(cpu);
561 				break;
562 
563 			default:
564 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
565 				       cpu, nextmsg);
566 				break;
567 			}
568 		} while (msgs);
569 	}
570 }
571 
572 void smp_send_reschedule(int cpu)
573 {
574 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
575 }
576 
577 void smp_send_timer(void)
578 {
579 	cpumask_t mask = cpu_online_map;
580 	cpu_clear(smp_processor_id(), mask);
581 	send_ipi_message(mask, IPI_TIMER);
582 }
583 
584 void smp_send_stop(void)
585 {
586 	cpumask_t mask = cpu_online_map;
587 	cpu_clear(smp_processor_id(), mask);
588 	send_ipi_message(mask, IPI_CPU_STOP);
589 }
590 
591 /*
592  * not supported here
593  */
594 int __init setup_profiling_timer(unsigned int multiplier)
595 {
596 	return -EINVAL;
597 }
598 
599 static int
600 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
601 		 cpumask_t mask)
602 {
603 	int ret = 0;
604 
605 	preempt_disable();
606 
607 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
608 	if (cpu_isset(smp_processor_id(), mask))
609 		func(info);
610 
611 	preempt_enable();
612 
613 	return ret;
614 }
615 
616 /**********************************************************************/
617 
618 /*
619  * TLB operations
620  */
621 struct tlb_args {
622 	struct vm_area_struct *ta_vma;
623 	unsigned long ta_start;
624 	unsigned long ta_end;
625 };
626 
627 static inline void ipi_flush_tlb_all(void *ignored)
628 {
629 	local_flush_tlb_all();
630 }
631 
632 static inline void ipi_flush_tlb_mm(void *arg)
633 {
634 	struct mm_struct *mm = (struct mm_struct *)arg;
635 
636 	local_flush_tlb_mm(mm);
637 }
638 
639 static inline void ipi_flush_tlb_page(void *arg)
640 {
641 	struct tlb_args *ta = (struct tlb_args *)arg;
642 
643 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
644 }
645 
646 static inline void ipi_flush_tlb_kernel_page(void *arg)
647 {
648 	struct tlb_args *ta = (struct tlb_args *)arg;
649 
650 	local_flush_tlb_kernel_page(ta->ta_start);
651 }
652 
653 static inline void ipi_flush_tlb_range(void *arg)
654 {
655 	struct tlb_args *ta = (struct tlb_args *)arg;
656 
657 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
658 }
659 
660 static inline void ipi_flush_tlb_kernel_range(void *arg)
661 {
662 	struct tlb_args *ta = (struct tlb_args *)arg;
663 
664 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
665 }
666 
667 void flush_tlb_all(void)
668 {
669 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
670 }
671 
672 void flush_tlb_mm(struct mm_struct *mm)
673 {
674 	cpumask_t mask = mm->cpu_vm_mask;
675 
676 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
677 }
678 
679 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
680 {
681 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
682 	struct tlb_args ta;
683 
684 	ta.ta_vma = vma;
685 	ta.ta_start = uaddr;
686 
687 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
688 }
689 
690 void flush_tlb_kernel_page(unsigned long kaddr)
691 {
692 	struct tlb_args ta;
693 
694 	ta.ta_start = kaddr;
695 
696 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
697 }
698 
699 void flush_tlb_range(struct vm_area_struct *vma,
700                      unsigned long start, unsigned long end)
701 {
702 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
703 	struct tlb_args ta;
704 
705 	ta.ta_vma = vma;
706 	ta.ta_start = start;
707 	ta.ta_end = end;
708 
709 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
710 }
711 
712 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
713 {
714 	struct tlb_args ta;
715 
716 	ta.ta_start = start;
717 	ta.ta_end = end;
718 
719 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
720 }
721