xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 82003e04)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/smp.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/exception.h>
37 #include <asm/idmap.h>
38 #include <asm/topology.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 /*
62  * control for which core is the next to come out of the secondary
63  * boot "holding pen"
64  */
65 volatile int pen_release = -1;
66 
67 enum ipi_msg_type {
68 	IPI_WAKEUP,
69 	IPI_TIMER,
70 	IPI_RESCHEDULE,
71 	IPI_CALL_FUNC,
72 	IPI_CPU_STOP,
73 	IPI_IRQ_WORK,
74 	IPI_COMPLETION,
75 	IPI_CPU_BACKTRACE,
76 	/*
77 	 * SGI8-15 can be reserved by secure firmware, and thus may
78 	 * not be usable by the kernel. Please keep the above limited
79 	 * to at most 8 entries.
80 	 */
81 };
82 
83 static DECLARE_COMPLETION(cpu_running);
84 
85 static struct smp_operations smp_ops __ro_after_init;
86 
87 void __init smp_set_ops(const struct smp_operations *ops)
88 {
89 	if (ops)
90 		smp_ops = *ops;
91 };
92 
93 static unsigned long get_arch_pgd(pgd_t *pgd)
94 {
95 #ifdef CONFIG_ARM_LPAE
96 	return __phys_to_pfn(virt_to_phys(pgd));
97 #else
98 	return virt_to_phys(pgd);
99 #endif
100 }
101 
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
103 {
104 	int ret;
105 
106 	if (!smp_ops.smp_boot_secondary)
107 		return -ENOSYS;
108 
109 	/*
110 	 * We need to tell the secondary core where to find
111 	 * its stack and the page tables.
112 	 */
113 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
114 #ifdef CONFIG_ARM_MPU
115 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
116 #endif
117 
118 #ifdef CONFIG_MMU
119 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
120 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
121 #endif
122 	sync_cache_w(&secondary_data);
123 
124 	/*
125 	 * Now bring the CPU into our world.
126 	 */
127 	ret = smp_ops.smp_boot_secondary(cpu, idle);
128 	if (ret == 0) {
129 		/*
130 		 * CPU was successfully started, wait for it
131 		 * to come online or time out.
132 		 */
133 		wait_for_completion_timeout(&cpu_running,
134 						 msecs_to_jiffies(1000));
135 
136 		if (!cpu_online(cpu)) {
137 			pr_crit("CPU%u: failed to come online\n", cpu);
138 			ret = -EIO;
139 		}
140 	} else {
141 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
142 	}
143 
144 
145 	memset(&secondary_data, 0, sizeof(secondary_data));
146 	return ret;
147 }
148 
149 /* platform specific SMP operations */
150 void __init smp_init_cpus(void)
151 {
152 	if (smp_ops.smp_init_cpus)
153 		smp_ops.smp_init_cpus();
154 }
155 
156 int platform_can_secondary_boot(void)
157 {
158 	return !!smp_ops.smp_boot_secondary;
159 }
160 
161 int platform_can_cpu_hotplug(void)
162 {
163 #ifdef CONFIG_HOTPLUG_CPU
164 	if (smp_ops.cpu_kill)
165 		return 1;
166 #endif
167 
168 	return 0;
169 }
170 
171 #ifdef CONFIG_HOTPLUG_CPU
172 static int platform_cpu_kill(unsigned int cpu)
173 {
174 	if (smp_ops.cpu_kill)
175 		return smp_ops.cpu_kill(cpu);
176 	return 1;
177 }
178 
179 static int platform_cpu_disable(unsigned int cpu)
180 {
181 	if (smp_ops.cpu_disable)
182 		return smp_ops.cpu_disable(cpu);
183 
184 	return 0;
185 }
186 
187 int platform_can_hotplug_cpu(unsigned int cpu)
188 {
189 	/* cpu_die must be specified to support hotplug */
190 	if (!smp_ops.cpu_die)
191 		return 0;
192 
193 	if (smp_ops.cpu_can_disable)
194 		return smp_ops.cpu_can_disable(cpu);
195 
196 	/*
197 	 * By default, allow disabling all CPUs except the first one,
198 	 * since this is special on a lot of platforms, e.g. because
199 	 * of clock tick interrupts.
200 	 */
201 	return cpu != 0;
202 }
203 
204 /*
205  * __cpu_disable runs on the processor to be shutdown.
206  */
207 int __cpu_disable(void)
208 {
209 	unsigned int cpu = smp_processor_id();
210 	int ret;
211 
212 	ret = platform_cpu_disable(cpu);
213 	if (ret)
214 		return ret;
215 
216 	/*
217 	 * Take this CPU offline.  Once we clear this, we can't return,
218 	 * and we must not schedule until we're ready to give up the cpu.
219 	 */
220 	set_cpu_online(cpu, false);
221 
222 	/*
223 	 * OK - migrate IRQs away from this CPU
224 	 */
225 	migrate_irqs();
226 
227 	/*
228 	 * Flush user cache and TLB mappings, and then remove this CPU
229 	 * from the vm mask set of all processes.
230 	 *
231 	 * Caches are flushed to the Level of Unification Inner Shareable
232 	 * to write-back dirty lines to unified caches shared by all CPUs.
233 	 */
234 	flush_cache_louis();
235 	local_flush_tlb_all();
236 
237 	clear_tasks_mm_cpumask(cpu);
238 
239 	return 0;
240 }
241 
242 static DECLARE_COMPLETION(cpu_died);
243 
244 /*
245  * called on the thread which is asking for a CPU to be shutdown -
246  * waits until shutdown has completed, or it is timed out.
247  */
248 void __cpu_die(unsigned int cpu)
249 {
250 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
251 		pr_err("CPU%u: cpu didn't die\n", cpu);
252 		return;
253 	}
254 	pr_notice("CPU%u: shutdown\n", cpu);
255 
256 	/*
257 	 * platform_cpu_kill() is generally expected to do the powering off
258 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
259 	 * be done by the CPU which is dying in preference to supporting
260 	 * this call, but that means there is _no_ synchronisation between
261 	 * the requesting CPU and the dying CPU actually losing power.
262 	 */
263 	if (!platform_cpu_kill(cpu))
264 		pr_err("CPU%u: unable to kill\n", cpu);
265 }
266 
267 /*
268  * Called from the idle thread for the CPU which has been shutdown.
269  *
270  * Note that we disable IRQs here, but do not re-enable them
271  * before returning to the caller. This is also the behaviour
272  * of the other hotplug-cpu capable cores, so presumably coming
273  * out of idle fixes this.
274  */
275 void arch_cpu_idle_dead(void)
276 {
277 	unsigned int cpu = smp_processor_id();
278 
279 	idle_task_exit();
280 
281 	local_irq_disable();
282 
283 	/*
284 	 * Flush the data out of the L1 cache for this CPU.  This must be
285 	 * before the completion to ensure that data is safely written out
286 	 * before platform_cpu_kill() gets called - which may disable
287 	 * *this* CPU and power down its cache.
288 	 */
289 	flush_cache_louis();
290 
291 	/*
292 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
293 	 * this returns, power and/or clocks can be removed at any point
294 	 * from this CPU and its cache by platform_cpu_kill().
295 	 */
296 	complete(&cpu_died);
297 
298 	/*
299 	 * Ensure that the cache lines associated with that completion are
300 	 * written out.  This covers the case where _this_ CPU is doing the
301 	 * powering down, to ensure that the completion is visible to the
302 	 * CPU waiting for this one.
303 	 */
304 	flush_cache_louis();
305 
306 	/*
307 	 * The actual CPU shutdown procedure is at least platform (if not
308 	 * CPU) specific.  This may remove power, or it may simply spin.
309 	 *
310 	 * Platforms are generally expected *NOT* to return from this call,
311 	 * although there are some which do because they have no way to
312 	 * power down the CPU.  These platforms are the _only_ reason we
313 	 * have a return path which uses the fragment of assembly below.
314 	 *
315 	 * The return path should not be used for platforms which can
316 	 * power off the CPU.
317 	 */
318 	if (smp_ops.cpu_die)
319 		smp_ops.cpu_die(cpu);
320 
321 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
322 		cpu);
323 
324 	/*
325 	 * Do not return to the idle loop - jump back to the secondary
326 	 * cpu initialisation.  There's some initialisation which needs
327 	 * to be repeated to undo the effects of taking the CPU offline.
328 	 */
329 	__asm__("mov	sp, %0\n"
330 	"	mov	fp, #0\n"
331 	"	b	secondary_start_kernel"
332 		:
333 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
334 }
335 #endif /* CONFIG_HOTPLUG_CPU */
336 
337 /*
338  * Called by both boot and secondaries to move global data into
339  * per-processor storage.
340  */
341 static void smp_store_cpu_info(unsigned int cpuid)
342 {
343 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
344 
345 	cpu_info->loops_per_jiffy = loops_per_jiffy;
346 	cpu_info->cpuid = read_cpuid_id();
347 
348 	store_cpu_topology(cpuid);
349 }
350 
351 /*
352  * This is the secondary CPU boot entry.  We're using this CPUs
353  * idle thread stack, but a set of temporary page tables.
354  */
355 asmlinkage void secondary_start_kernel(void)
356 {
357 	struct mm_struct *mm = &init_mm;
358 	unsigned int cpu;
359 
360 	/*
361 	 * The identity mapping is uncached (strongly ordered), so
362 	 * switch away from it before attempting any exclusive accesses.
363 	 */
364 	cpu_switch_mm(mm->pgd, mm);
365 	local_flush_bp_all();
366 	enter_lazy_tlb(mm, current);
367 	local_flush_tlb_all();
368 
369 	/*
370 	 * All kernel threads share the same mm context; grab a
371 	 * reference and switch to it.
372 	 */
373 	cpu = smp_processor_id();
374 	atomic_inc(&mm->mm_count);
375 	current->active_mm = mm;
376 	cpumask_set_cpu(cpu, mm_cpumask(mm));
377 
378 	cpu_init();
379 
380 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
381 
382 	preempt_disable();
383 	trace_hardirqs_off();
384 
385 	/*
386 	 * Give the platform a chance to do its own initialisation.
387 	 */
388 	if (smp_ops.smp_secondary_init)
389 		smp_ops.smp_secondary_init(cpu);
390 
391 	notify_cpu_starting(cpu);
392 
393 	calibrate_delay();
394 
395 	smp_store_cpu_info(cpu);
396 
397 	/*
398 	 * OK, now it's safe to let the boot CPU continue.  Wait for
399 	 * the CPU migration code to notice that the CPU is online
400 	 * before we continue - which happens after __cpu_up returns.
401 	 */
402 	set_cpu_online(cpu, true);
403 	complete(&cpu_running);
404 
405 	local_irq_enable();
406 	local_fiq_enable();
407 	local_abt_enable();
408 
409 	/*
410 	 * OK, it's off to the idle thread for us
411 	 */
412 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
413 }
414 
415 void __init smp_cpus_done(unsigned int max_cpus)
416 {
417 	int cpu;
418 	unsigned long bogosum = 0;
419 
420 	for_each_online_cpu(cpu)
421 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
422 
423 	printk(KERN_INFO "SMP: Total of %d processors activated "
424 	       "(%lu.%02lu BogoMIPS).\n",
425 	       num_online_cpus(),
426 	       bogosum / (500000/HZ),
427 	       (bogosum / (5000/HZ)) % 100);
428 
429 	hyp_mode_check();
430 }
431 
432 void __init smp_prepare_boot_cpu(void)
433 {
434 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
435 }
436 
437 void __init smp_prepare_cpus(unsigned int max_cpus)
438 {
439 	unsigned int ncores = num_possible_cpus();
440 
441 	init_cpu_topology();
442 
443 	smp_store_cpu_info(smp_processor_id());
444 
445 	/*
446 	 * are we trying to boot more cores than exist?
447 	 */
448 	if (max_cpus > ncores)
449 		max_cpus = ncores;
450 	if (ncores > 1 && max_cpus) {
451 		/*
452 		 * Initialise the present map, which describes the set of CPUs
453 		 * actually populated at the present time. A platform should
454 		 * re-initialize the map in the platforms smp_prepare_cpus()
455 		 * if present != possible (e.g. physical hotplug).
456 		 */
457 		init_cpu_present(cpu_possible_mask);
458 
459 		/*
460 		 * Initialise the SCU if there are more than one CPU
461 		 * and let them know where to start.
462 		 */
463 		if (smp_ops.smp_prepare_cpus)
464 			smp_ops.smp_prepare_cpus(max_cpus);
465 	}
466 }
467 
468 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
469 
470 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
471 {
472 	if (!__smp_cross_call)
473 		__smp_cross_call = fn;
474 }
475 
476 static const char *ipi_types[NR_IPI] __tracepoint_string = {
477 #define S(x,s)	[x] = s
478 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
479 	S(IPI_TIMER, "Timer broadcast interrupts"),
480 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
481 	S(IPI_CALL_FUNC, "Function call interrupts"),
482 	S(IPI_CPU_STOP, "CPU stop interrupts"),
483 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
484 	S(IPI_COMPLETION, "completion interrupts"),
485 };
486 
487 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
488 {
489 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
490 	__smp_cross_call(target, ipinr);
491 }
492 
493 void show_ipi_list(struct seq_file *p, int prec)
494 {
495 	unsigned int cpu, i;
496 
497 	for (i = 0; i < NR_IPI; i++) {
498 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
499 
500 		for_each_online_cpu(cpu)
501 			seq_printf(p, "%10u ",
502 				   __get_irq_stat(cpu, ipi_irqs[i]));
503 
504 		seq_printf(p, " %s\n", ipi_types[i]);
505 	}
506 }
507 
508 u64 smp_irq_stat_cpu(unsigned int cpu)
509 {
510 	u64 sum = 0;
511 	int i;
512 
513 	for (i = 0; i < NR_IPI; i++)
514 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
515 
516 	return sum;
517 }
518 
519 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
520 {
521 	smp_cross_call(mask, IPI_CALL_FUNC);
522 }
523 
524 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
525 {
526 	smp_cross_call(mask, IPI_WAKEUP);
527 }
528 
529 void arch_send_call_function_single_ipi(int cpu)
530 {
531 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
532 }
533 
534 #ifdef CONFIG_IRQ_WORK
535 void arch_irq_work_raise(void)
536 {
537 	if (arch_irq_work_has_interrupt())
538 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
539 }
540 #endif
541 
542 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
543 void tick_broadcast(const struct cpumask *mask)
544 {
545 	smp_cross_call(mask, IPI_TIMER);
546 }
547 #endif
548 
549 static DEFINE_RAW_SPINLOCK(stop_lock);
550 
551 /*
552  * ipi_cpu_stop - handle IPI from smp_send_stop()
553  */
554 static void ipi_cpu_stop(unsigned int cpu)
555 {
556 	if (system_state == SYSTEM_BOOTING ||
557 	    system_state == SYSTEM_RUNNING) {
558 		raw_spin_lock(&stop_lock);
559 		pr_crit("CPU%u: stopping\n", cpu);
560 		dump_stack();
561 		raw_spin_unlock(&stop_lock);
562 	}
563 
564 	set_cpu_online(cpu, false);
565 
566 	local_fiq_disable();
567 	local_irq_disable();
568 
569 	while (1)
570 		cpu_relax();
571 }
572 
573 static DEFINE_PER_CPU(struct completion *, cpu_completion);
574 
575 int register_ipi_completion(struct completion *completion, int cpu)
576 {
577 	per_cpu(cpu_completion, cpu) = completion;
578 	return IPI_COMPLETION;
579 }
580 
581 static void ipi_complete(unsigned int cpu)
582 {
583 	complete(per_cpu(cpu_completion, cpu));
584 }
585 
586 /*
587  * Main handler for inter-processor interrupts
588  */
589 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
590 {
591 	handle_IPI(ipinr, regs);
592 }
593 
594 void handle_IPI(int ipinr, struct pt_regs *regs)
595 {
596 	unsigned int cpu = smp_processor_id();
597 	struct pt_regs *old_regs = set_irq_regs(regs);
598 
599 	if ((unsigned)ipinr < NR_IPI) {
600 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
601 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
602 	}
603 
604 	switch (ipinr) {
605 	case IPI_WAKEUP:
606 		break;
607 
608 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
609 	case IPI_TIMER:
610 		irq_enter();
611 		tick_receive_broadcast();
612 		irq_exit();
613 		break;
614 #endif
615 
616 	case IPI_RESCHEDULE:
617 		scheduler_ipi();
618 		break;
619 
620 	case IPI_CALL_FUNC:
621 		irq_enter();
622 		generic_smp_call_function_interrupt();
623 		irq_exit();
624 		break;
625 
626 	case IPI_CPU_STOP:
627 		irq_enter();
628 		ipi_cpu_stop(cpu);
629 		irq_exit();
630 		break;
631 
632 #ifdef CONFIG_IRQ_WORK
633 	case IPI_IRQ_WORK:
634 		irq_enter();
635 		irq_work_run();
636 		irq_exit();
637 		break;
638 #endif
639 
640 	case IPI_COMPLETION:
641 		irq_enter();
642 		ipi_complete(cpu);
643 		irq_exit();
644 		break;
645 
646 	case IPI_CPU_BACKTRACE:
647 		printk_nmi_enter();
648 		irq_enter();
649 		nmi_cpu_backtrace(regs);
650 		irq_exit();
651 		printk_nmi_exit();
652 		break;
653 
654 	default:
655 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
656 		        cpu, ipinr);
657 		break;
658 	}
659 
660 	if ((unsigned)ipinr < NR_IPI)
661 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
662 	set_irq_regs(old_regs);
663 }
664 
665 void smp_send_reschedule(int cpu)
666 {
667 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
668 }
669 
670 void smp_send_stop(void)
671 {
672 	unsigned long timeout;
673 	struct cpumask mask;
674 
675 	cpumask_copy(&mask, cpu_online_mask);
676 	cpumask_clear_cpu(smp_processor_id(), &mask);
677 	if (!cpumask_empty(&mask))
678 		smp_cross_call(&mask, IPI_CPU_STOP);
679 
680 	/* Wait up to one second for other CPUs to stop */
681 	timeout = USEC_PER_SEC;
682 	while (num_online_cpus() > 1 && timeout--)
683 		udelay(1);
684 
685 	if (num_online_cpus() > 1)
686 		pr_warn("SMP: failed to stop secondary CPUs\n");
687 }
688 
689 /*
690  * not supported here
691  */
692 int setup_profiling_timer(unsigned int multiplier)
693 {
694 	return -EINVAL;
695 }
696 
697 #ifdef CONFIG_CPU_FREQ
698 
699 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
701 static unsigned long global_l_p_j_ref;
702 static unsigned long global_l_p_j_ref_freq;
703 
704 static int cpufreq_callback(struct notifier_block *nb,
705 					unsigned long val, void *data)
706 {
707 	struct cpufreq_freqs *freq = data;
708 	int cpu = freq->cpu;
709 
710 	if (freq->flags & CPUFREQ_CONST_LOOPS)
711 		return NOTIFY_OK;
712 
713 	if (!per_cpu(l_p_j_ref, cpu)) {
714 		per_cpu(l_p_j_ref, cpu) =
715 			per_cpu(cpu_data, cpu).loops_per_jiffy;
716 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
717 		if (!global_l_p_j_ref) {
718 			global_l_p_j_ref = loops_per_jiffy;
719 			global_l_p_j_ref_freq = freq->old;
720 		}
721 	}
722 
723 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
724 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
725 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
726 						global_l_p_j_ref_freq,
727 						freq->new);
728 		per_cpu(cpu_data, cpu).loops_per_jiffy =
729 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
730 					per_cpu(l_p_j_ref_freq, cpu),
731 					freq->new);
732 	}
733 	return NOTIFY_OK;
734 }
735 
736 static struct notifier_block cpufreq_notifier = {
737 	.notifier_call  = cpufreq_callback,
738 };
739 
740 static int __init register_cpufreq_notifier(void)
741 {
742 	return cpufreq_register_notifier(&cpufreq_notifier,
743 						CPUFREQ_TRANSITION_NOTIFIER);
744 }
745 core_initcall(register_cpufreq_notifier);
746 
747 #endif
748 
749 static void raise_nmi(cpumask_t *mask)
750 {
751 	smp_cross_call(mask, IPI_CPU_BACKTRACE);
752 }
753 
754 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
755 {
756 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
757 }
758