xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 7dd65feb)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 
28 #include <asm/atomic.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/pgalloc.h>
35 #include <asm/processor.h>
36 #include <asm/tlbflush.h>
37 #include <asm/ptrace.h>
38 #include <asm/localtimer.h>
39 #include <asm/smp_plat.h>
40 
41 /*
42  * as from 2.5, kernels no longer have an init_tasks structure
43  * so we need some other way of telling a new secondary core
44  * where to place its SVC stack
45  */
46 struct secondary_data secondary_data;
47 
48 /*
49  * structures for inter-processor calls
50  * - A collection of single bit ipi messages.
51  */
52 struct ipi_data {
53 	spinlock_t lock;
54 	unsigned long ipi_count;
55 	unsigned long bits;
56 };
57 
58 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
59 	.lock	= SPIN_LOCK_UNLOCKED,
60 };
61 
62 enum ipi_msg_type {
63 	IPI_TIMER,
64 	IPI_RESCHEDULE,
65 	IPI_CALL_FUNC,
66 	IPI_CALL_FUNC_SINGLE,
67 	IPI_CPU_STOP,
68 };
69 
70 int __cpuinit __cpu_up(unsigned int cpu)
71 {
72 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
73 	struct task_struct *idle = ci->idle;
74 	pgd_t *pgd;
75 	pmd_t *pmd;
76 	int ret;
77 
78 	/*
79 	 * Spawn a new process manually, if not already done.
80 	 * Grab a pointer to its task struct so we can mess with it
81 	 */
82 	if (!idle) {
83 		idle = fork_idle(cpu);
84 		if (IS_ERR(idle)) {
85 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
86 			return PTR_ERR(idle);
87 		}
88 		ci->idle = idle;
89 	}
90 
91 	/*
92 	 * Allocate initial page tables to allow the new CPU to
93 	 * enable the MMU safely.  This essentially means a set
94 	 * of our "standard" page tables, with the addition of
95 	 * a 1:1 mapping for the physical address of the kernel.
96 	 */
97 	pgd = pgd_alloc(&init_mm);
98 	pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
99 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
100 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
101 	flush_pmd_entry(pmd);
102 
103 	/*
104 	 * We need to tell the secondary core where to find
105 	 * its stack and the page tables.
106 	 */
107 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
108 	secondary_data.pgdir = virt_to_phys(pgd);
109 	wmb();
110 
111 	/*
112 	 * Now bring the CPU into our world.
113 	 */
114 	ret = boot_secondary(cpu, idle);
115 	if (ret == 0) {
116 		unsigned long timeout;
117 
118 		/*
119 		 * CPU was successfully started, wait for it
120 		 * to come online or time out.
121 		 */
122 		timeout = jiffies + HZ;
123 		while (time_before(jiffies, timeout)) {
124 			if (cpu_online(cpu))
125 				break;
126 
127 			udelay(10);
128 			barrier();
129 		}
130 
131 		if (!cpu_online(cpu))
132 			ret = -EIO;
133 	}
134 
135 	secondary_data.stack = NULL;
136 	secondary_data.pgdir = 0;
137 
138 	*pmd = __pmd(0);
139 	clean_pmd_entry(pmd);
140 	pgd_free(&init_mm, pgd);
141 
142 	if (ret) {
143 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
144 
145 		/*
146 		 * FIXME: We need to clean up the new idle thread. --rmk
147 		 */
148 	}
149 
150 	return ret;
151 }
152 
153 #ifdef CONFIG_HOTPLUG_CPU
154 /*
155  * __cpu_disable runs on the processor to be shutdown.
156  */
157 int __cpu_disable(void)
158 {
159 	unsigned int cpu = smp_processor_id();
160 	struct task_struct *p;
161 	int ret;
162 
163 	ret = mach_cpu_disable(cpu);
164 	if (ret)
165 		return ret;
166 
167 	/*
168 	 * Take this CPU offline.  Once we clear this, we can't return,
169 	 * and we must not schedule until we're ready to give up the cpu.
170 	 */
171 	set_cpu_online(cpu, false);
172 
173 	/*
174 	 * OK - migrate IRQs away from this CPU
175 	 */
176 	migrate_irqs();
177 
178 	/*
179 	 * Stop the local timer for this CPU.
180 	 */
181 	local_timer_stop();
182 
183 	/*
184 	 * Flush user cache and TLB mappings, and then remove this CPU
185 	 * from the vm mask set of all processes.
186 	 */
187 	flush_cache_all();
188 	local_flush_tlb_all();
189 
190 	read_lock(&tasklist_lock);
191 	for_each_process(p) {
192 		if (p->mm)
193 			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
194 	}
195 	read_unlock(&tasklist_lock);
196 
197 	return 0;
198 }
199 
200 /*
201  * called on the thread which is asking for a CPU to be shutdown -
202  * waits until shutdown has completed, or it is timed out.
203  */
204 void __cpu_die(unsigned int cpu)
205 {
206 	if (!platform_cpu_kill(cpu))
207 		printk("CPU%u: unable to kill\n", cpu);
208 }
209 
210 /*
211  * Called from the idle thread for the CPU which has been shutdown.
212  *
213  * Note that we disable IRQs here, but do not re-enable them
214  * before returning to the caller. This is also the behaviour
215  * of the other hotplug-cpu capable cores, so presumably coming
216  * out of idle fixes this.
217  */
218 void __ref cpu_die(void)
219 {
220 	unsigned int cpu = smp_processor_id();
221 
222 	local_irq_disable();
223 	idle_task_exit();
224 
225 	/*
226 	 * actual CPU shutdown procedure is at least platform (if not
227 	 * CPU) specific
228 	 */
229 	platform_cpu_die(cpu);
230 
231 	/*
232 	 * Do not return to the idle loop - jump back to the secondary
233 	 * cpu initialisation.  There's some initialisation which needs
234 	 * to be repeated to undo the effects of taking the CPU offline.
235 	 */
236 	__asm__("mov	sp, %0\n"
237 	"	b	secondary_start_kernel"
238 		:
239 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
240 }
241 #endif /* CONFIG_HOTPLUG_CPU */
242 
243 /*
244  * This is the secondary CPU boot entry.  We're using this CPUs
245  * idle thread stack, but a set of temporary page tables.
246  */
247 asmlinkage void __cpuinit secondary_start_kernel(void)
248 {
249 	struct mm_struct *mm = &init_mm;
250 	unsigned int cpu = smp_processor_id();
251 
252 	printk("CPU%u: Booted secondary processor\n", cpu);
253 
254 	/*
255 	 * All kernel threads share the same mm context; grab a
256 	 * reference and switch to it.
257 	 */
258 	atomic_inc(&mm->mm_users);
259 	atomic_inc(&mm->mm_count);
260 	current->active_mm = mm;
261 	cpumask_set_cpu(cpu, mm_cpumask(mm));
262 	cpu_switch_mm(mm->pgd, mm);
263 	enter_lazy_tlb(mm, current);
264 	local_flush_tlb_all();
265 
266 	cpu_init();
267 	preempt_disable();
268 
269 	/*
270 	 * Give the platform a chance to do its own initialisation.
271 	 */
272 	platform_secondary_init(cpu);
273 
274 	/*
275 	 * Enable local interrupts.
276 	 */
277 	notify_cpu_starting(cpu);
278 	local_irq_enable();
279 	local_fiq_enable();
280 
281 	/*
282 	 * Setup the percpu timer for this CPU.
283 	 */
284 	percpu_timer_setup();
285 
286 	calibrate_delay();
287 
288 	smp_store_cpu_info(cpu);
289 
290 	/*
291 	 * OK, now it's safe to let the boot CPU continue
292 	 */
293 	set_cpu_online(cpu, true);
294 
295 	/*
296 	 * OK, it's off to the idle thread for us
297 	 */
298 	cpu_idle();
299 }
300 
301 /*
302  * Called by both boot and secondaries to move global data into
303  * per-processor storage.
304  */
305 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
306 {
307 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
308 
309 	cpu_info->loops_per_jiffy = loops_per_jiffy;
310 }
311 
312 void __init smp_cpus_done(unsigned int max_cpus)
313 {
314 	int cpu;
315 	unsigned long bogosum = 0;
316 
317 	for_each_online_cpu(cpu)
318 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
319 
320 	printk(KERN_INFO "SMP: Total of %d processors activated "
321 	       "(%lu.%02lu BogoMIPS).\n",
322 	       num_online_cpus(),
323 	       bogosum / (500000/HZ),
324 	       (bogosum / (5000/HZ)) % 100);
325 }
326 
327 void __init smp_prepare_boot_cpu(void)
328 {
329 	unsigned int cpu = smp_processor_id();
330 
331 	per_cpu(cpu_data, cpu).idle = current;
332 }
333 
334 static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
335 {
336 	unsigned long flags;
337 	unsigned int cpu;
338 
339 	local_irq_save(flags);
340 
341 	for_each_cpu(cpu, mask) {
342 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
343 
344 		spin_lock(&ipi->lock);
345 		ipi->bits |= 1 << msg;
346 		spin_unlock(&ipi->lock);
347 	}
348 
349 	/*
350 	 * Call the platform specific cross-CPU call function.
351 	 */
352 	smp_cross_call(mask);
353 
354 	local_irq_restore(flags);
355 }
356 
357 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
358 {
359 	send_ipi_message(mask, IPI_CALL_FUNC);
360 }
361 
362 void arch_send_call_function_single_ipi(int cpu)
363 {
364 	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
365 }
366 
367 void show_ipi_list(struct seq_file *p)
368 {
369 	unsigned int cpu;
370 
371 	seq_puts(p, "IPI:");
372 
373 	for_each_present_cpu(cpu)
374 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
375 
376 	seq_putc(p, '\n');
377 }
378 
379 void show_local_irqs(struct seq_file *p)
380 {
381 	unsigned int cpu;
382 
383 	seq_printf(p, "LOC: ");
384 
385 	for_each_present_cpu(cpu)
386 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
387 
388 	seq_putc(p, '\n');
389 }
390 
391 /*
392  * Timer (local or broadcast) support
393  */
394 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
395 
396 static void ipi_timer(void)
397 {
398 	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
399 	irq_enter();
400 	evt->event_handler(evt);
401 	irq_exit();
402 }
403 
404 #ifdef CONFIG_LOCAL_TIMERS
405 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
406 {
407 	struct pt_regs *old_regs = set_irq_regs(regs);
408 	int cpu = smp_processor_id();
409 
410 	if (local_timer_ack()) {
411 		irq_stat[cpu].local_timer_irqs++;
412 		ipi_timer();
413 	}
414 
415 	set_irq_regs(old_regs);
416 }
417 #endif
418 
419 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
420 static void smp_timer_broadcast(const struct cpumask *mask)
421 {
422 	send_ipi_message(mask, IPI_TIMER);
423 }
424 
425 static void broadcast_timer_set_mode(enum clock_event_mode mode,
426 	struct clock_event_device *evt)
427 {
428 }
429 
430 static void local_timer_setup(struct clock_event_device *evt)
431 {
432 	evt->name	= "dummy_timer";
433 	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
434 			  CLOCK_EVT_FEAT_PERIODIC |
435 			  CLOCK_EVT_FEAT_DUMMY;
436 	evt->rating	= 400;
437 	evt->mult	= 1;
438 	evt->set_mode	= broadcast_timer_set_mode;
439 	evt->broadcast	= smp_timer_broadcast;
440 
441 	clockevents_register_device(evt);
442 }
443 #endif
444 
445 void __cpuinit percpu_timer_setup(void)
446 {
447 	unsigned int cpu = smp_processor_id();
448 	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
449 
450 	evt->cpumask = cpumask_of(cpu);
451 
452 	local_timer_setup(evt);
453 }
454 
455 static DEFINE_SPINLOCK(stop_lock);
456 
457 /*
458  * ipi_cpu_stop - handle IPI from smp_send_stop()
459  */
460 static void ipi_cpu_stop(unsigned int cpu)
461 {
462 	spin_lock(&stop_lock);
463 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
464 	dump_stack();
465 	spin_unlock(&stop_lock);
466 
467 	set_cpu_online(cpu, false);
468 
469 	local_fiq_disable();
470 	local_irq_disable();
471 
472 	while (1)
473 		cpu_relax();
474 }
475 
476 /*
477  * Main handler for inter-processor interrupts
478  *
479  * For ARM, the ipimask now only identifies a single
480  * category of IPI (Bit 1 IPIs have been replaced by a
481  * different mechanism):
482  *
483  *  Bit 0 - Inter-processor function call
484  */
485 asmlinkage void __exception do_IPI(struct pt_regs *regs)
486 {
487 	unsigned int cpu = smp_processor_id();
488 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
489 	struct pt_regs *old_regs = set_irq_regs(regs);
490 
491 	ipi->ipi_count++;
492 
493 	for (;;) {
494 		unsigned long msgs;
495 
496 		spin_lock(&ipi->lock);
497 		msgs = ipi->bits;
498 		ipi->bits = 0;
499 		spin_unlock(&ipi->lock);
500 
501 		if (!msgs)
502 			break;
503 
504 		do {
505 			unsigned nextmsg;
506 
507 			nextmsg = msgs & -msgs;
508 			msgs &= ~nextmsg;
509 			nextmsg = ffz(~nextmsg);
510 
511 			switch (nextmsg) {
512 			case IPI_TIMER:
513 				ipi_timer();
514 				break;
515 
516 			case IPI_RESCHEDULE:
517 				/*
518 				 * nothing more to do - eveything is
519 				 * done on the interrupt return path
520 				 */
521 				break;
522 
523 			case IPI_CALL_FUNC:
524 				generic_smp_call_function_interrupt();
525 				break;
526 
527 			case IPI_CALL_FUNC_SINGLE:
528 				generic_smp_call_function_single_interrupt();
529 				break;
530 
531 			case IPI_CPU_STOP:
532 				ipi_cpu_stop(cpu);
533 				break;
534 
535 			default:
536 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
537 				       cpu, nextmsg);
538 				break;
539 			}
540 		} while (msgs);
541 	}
542 
543 	set_irq_regs(old_regs);
544 }
545 
546 void smp_send_reschedule(int cpu)
547 {
548 	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
549 }
550 
551 void smp_send_stop(void)
552 {
553 	cpumask_t mask = cpu_online_map;
554 	cpu_clear(smp_processor_id(), mask);
555 	send_ipi_message(&mask, IPI_CPU_STOP);
556 }
557 
558 /*
559  * not supported here
560  */
561 int setup_profiling_timer(unsigned int multiplier)
562 {
563 	return -EINVAL;
564 }
565 
566 static void
567 on_each_cpu_mask(void (*func)(void *), void *info, int wait,
568 		const struct cpumask *mask)
569 {
570 	preempt_disable();
571 
572 	smp_call_function_many(mask, func, info, wait);
573 	if (cpumask_test_cpu(smp_processor_id(), mask))
574 		func(info);
575 
576 	preempt_enable();
577 }
578 
579 /**********************************************************************/
580 
581 /*
582  * TLB operations
583  */
584 struct tlb_args {
585 	struct vm_area_struct *ta_vma;
586 	unsigned long ta_start;
587 	unsigned long ta_end;
588 };
589 
590 static inline void ipi_flush_tlb_all(void *ignored)
591 {
592 	local_flush_tlb_all();
593 }
594 
595 static inline void ipi_flush_tlb_mm(void *arg)
596 {
597 	struct mm_struct *mm = (struct mm_struct *)arg;
598 
599 	local_flush_tlb_mm(mm);
600 }
601 
602 static inline void ipi_flush_tlb_page(void *arg)
603 {
604 	struct tlb_args *ta = (struct tlb_args *)arg;
605 
606 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
607 }
608 
609 static inline void ipi_flush_tlb_kernel_page(void *arg)
610 {
611 	struct tlb_args *ta = (struct tlb_args *)arg;
612 
613 	local_flush_tlb_kernel_page(ta->ta_start);
614 }
615 
616 static inline void ipi_flush_tlb_range(void *arg)
617 {
618 	struct tlb_args *ta = (struct tlb_args *)arg;
619 
620 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
621 }
622 
623 static inline void ipi_flush_tlb_kernel_range(void *arg)
624 {
625 	struct tlb_args *ta = (struct tlb_args *)arg;
626 
627 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
628 }
629 
630 void flush_tlb_all(void)
631 {
632 	if (tlb_ops_need_broadcast())
633 		on_each_cpu(ipi_flush_tlb_all, NULL, 1);
634 	else
635 		local_flush_tlb_all();
636 }
637 
638 void flush_tlb_mm(struct mm_struct *mm)
639 {
640 	if (tlb_ops_need_broadcast())
641 		on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
642 	else
643 		local_flush_tlb_mm(mm);
644 }
645 
646 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
647 {
648 	if (tlb_ops_need_broadcast()) {
649 		struct tlb_args ta;
650 		ta.ta_vma = vma;
651 		ta.ta_start = uaddr;
652 		on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
653 	} else
654 		local_flush_tlb_page(vma, uaddr);
655 }
656 
657 void flush_tlb_kernel_page(unsigned long kaddr)
658 {
659 	if (tlb_ops_need_broadcast()) {
660 		struct tlb_args ta;
661 		ta.ta_start = kaddr;
662 		on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
663 	} else
664 		local_flush_tlb_kernel_page(kaddr);
665 }
666 
667 void flush_tlb_range(struct vm_area_struct *vma,
668                      unsigned long start, unsigned long end)
669 {
670 	if (tlb_ops_need_broadcast()) {
671 		struct tlb_args ta;
672 		ta.ta_vma = vma;
673 		ta.ta_start = start;
674 		ta.ta_end = end;
675 		on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
676 	} else
677 		local_flush_tlb_range(vma, start, end);
678 }
679 
680 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
681 {
682 	if (tlb_ops_need_broadcast()) {
683 		struct tlb_args ta;
684 		ta.ta_start = start;
685 		ta.ta_end = end;
686 		on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
687 	} else
688 		local_flush_tlb_kernel_range(start, end);
689 }
690