1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/nmi.h> 25 #include <linux/percpu.h> 26 #include <linux/clockchips.h> 27 #include <linux/completion.h> 28 #include <linux/cpufreq.h> 29 #include <linux/irq_work.h> 30 31 #include <linux/atomic.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/pgtable.h> 41 #include <asm/pgalloc.h> 42 #include <asm/processor.h> 43 #include <asm/sections.h> 44 #include <asm/tlbflush.h> 45 #include <asm/ptrace.h> 46 #include <asm/smp_plat.h> 47 #include <asm/virt.h> 48 #include <asm/mach/arch.h> 49 #include <asm/mpu.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/ipi.h> 53 54 /* 55 * as from 2.5, kernels no longer have an init_tasks structure 56 * so we need some other way of telling a new secondary core 57 * where to place its SVC stack 58 */ 59 struct secondary_data secondary_data; 60 61 /* 62 * control for which core is the next to come out of the secondary 63 * boot "holding pen" 64 */ 65 volatile int pen_release = -1; 66 67 enum ipi_msg_type { 68 IPI_WAKEUP, 69 IPI_TIMER, 70 IPI_RESCHEDULE, 71 IPI_CALL_FUNC, 72 IPI_CPU_STOP, 73 IPI_IRQ_WORK, 74 IPI_COMPLETION, 75 IPI_CPU_BACKTRACE, 76 /* 77 * SGI8-15 can be reserved by secure firmware, and thus may 78 * not be usable by the kernel. Please keep the above limited 79 * to at most 8 entries. 80 */ 81 }; 82 83 static DECLARE_COMPLETION(cpu_running); 84 85 static struct smp_operations smp_ops; 86 87 void __init smp_set_ops(const struct smp_operations *ops) 88 { 89 if (ops) 90 smp_ops = *ops; 91 }; 92 93 static unsigned long get_arch_pgd(pgd_t *pgd) 94 { 95 #ifdef CONFIG_ARM_LPAE 96 return __phys_to_pfn(virt_to_phys(pgd)); 97 #else 98 return virt_to_phys(pgd); 99 #endif 100 } 101 102 int __cpu_up(unsigned int cpu, struct task_struct *idle) 103 { 104 int ret; 105 106 if (!smp_ops.smp_boot_secondary) 107 return -ENOSYS; 108 109 /* 110 * We need to tell the secondary core where to find 111 * its stack and the page tables. 112 */ 113 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 114 #ifdef CONFIG_ARM_MPU 115 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 116 #endif 117 118 #ifdef CONFIG_MMU 119 secondary_data.pgdir = virt_to_phys(idmap_pgd); 120 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 121 #endif 122 sync_cache_w(&secondary_data); 123 124 /* 125 * Now bring the CPU into our world. 126 */ 127 ret = smp_ops.smp_boot_secondary(cpu, idle); 128 if (ret == 0) { 129 /* 130 * CPU was successfully started, wait for it 131 * to come online or time out. 132 */ 133 wait_for_completion_timeout(&cpu_running, 134 msecs_to_jiffies(1000)); 135 136 if (!cpu_online(cpu)) { 137 pr_crit("CPU%u: failed to come online\n", cpu); 138 ret = -EIO; 139 } 140 } else { 141 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 142 } 143 144 145 memset(&secondary_data, 0, sizeof(secondary_data)); 146 return ret; 147 } 148 149 /* platform specific SMP operations */ 150 void __init smp_init_cpus(void) 151 { 152 if (smp_ops.smp_init_cpus) 153 smp_ops.smp_init_cpus(); 154 } 155 156 int platform_can_secondary_boot(void) 157 { 158 return !!smp_ops.smp_boot_secondary; 159 } 160 161 int platform_can_cpu_hotplug(void) 162 { 163 #ifdef CONFIG_HOTPLUG_CPU 164 if (smp_ops.cpu_kill) 165 return 1; 166 #endif 167 168 return 0; 169 } 170 171 #ifdef CONFIG_HOTPLUG_CPU 172 static int platform_cpu_kill(unsigned int cpu) 173 { 174 if (smp_ops.cpu_kill) 175 return smp_ops.cpu_kill(cpu); 176 return 1; 177 } 178 179 static int platform_cpu_disable(unsigned int cpu) 180 { 181 if (smp_ops.cpu_disable) 182 return smp_ops.cpu_disable(cpu); 183 184 return 0; 185 } 186 187 int platform_can_hotplug_cpu(unsigned int cpu) 188 { 189 /* cpu_die must be specified to support hotplug */ 190 if (!smp_ops.cpu_die) 191 return 0; 192 193 if (smp_ops.cpu_can_disable) 194 return smp_ops.cpu_can_disable(cpu); 195 196 /* 197 * By default, allow disabling all CPUs except the first one, 198 * since this is special on a lot of platforms, e.g. because 199 * of clock tick interrupts. 200 */ 201 return cpu != 0; 202 } 203 204 /* 205 * __cpu_disable runs on the processor to be shutdown. 206 */ 207 int __cpu_disable(void) 208 { 209 unsigned int cpu = smp_processor_id(); 210 int ret; 211 212 ret = platform_cpu_disable(cpu); 213 if (ret) 214 return ret; 215 216 /* 217 * Take this CPU offline. Once we clear this, we can't return, 218 * and we must not schedule until we're ready to give up the cpu. 219 */ 220 set_cpu_online(cpu, false); 221 222 /* 223 * OK - migrate IRQs away from this CPU 224 */ 225 migrate_irqs(); 226 227 /* 228 * Flush user cache and TLB mappings, and then remove this CPU 229 * from the vm mask set of all processes. 230 * 231 * Caches are flushed to the Level of Unification Inner Shareable 232 * to write-back dirty lines to unified caches shared by all CPUs. 233 */ 234 flush_cache_louis(); 235 local_flush_tlb_all(); 236 237 clear_tasks_mm_cpumask(cpu); 238 239 return 0; 240 } 241 242 static DECLARE_COMPLETION(cpu_died); 243 244 /* 245 * called on the thread which is asking for a CPU to be shutdown - 246 * waits until shutdown has completed, or it is timed out. 247 */ 248 void __cpu_die(unsigned int cpu) 249 { 250 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 251 pr_err("CPU%u: cpu didn't die\n", cpu); 252 return; 253 } 254 pr_notice("CPU%u: shutdown\n", cpu); 255 256 /* 257 * platform_cpu_kill() is generally expected to do the powering off 258 * and/or cutting of clocks to the dying CPU. Optionally, this may 259 * be done by the CPU which is dying in preference to supporting 260 * this call, but that means there is _no_ synchronisation between 261 * the requesting CPU and the dying CPU actually losing power. 262 */ 263 if (!platform_cpu_kill(cpu)) 264 pr_err("CPU%u: unable to kill\n", cpu); 265 } 266 267 /* 268 * Called from the idle thread for the CPU which has been shutdown. 269 * 270 * Note that we disable IRQs here, but do not re-enable them 271 * before returning to the caller. This is also the behaviour 272 * of the other hotplug-cpu capable cores, so presumably coming 273 * out of idle fixes this. 274 */ 275 void arch_cpu_idle_dead(void) 276 { 277 unsigned int cpu = smp_processor_id(); 278 279 idle_task_exit(); 280 281 local_irq_disable(); 282 283 /* 284 * Flush the data out of the L1 cache for this CPU. This must be 285 * before the completion to ensure that data is safely written out 286 * before platform_cpu_kill() gets called - which may disable 287 * *this* CPU and power down its cache. 288 */ 289 flush_cache_louis(); 290 291 /* 292 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 293 * this returns, power and/or clocks can be removed at any point 294 * from this CPU and its cache by platform_cpu_kill(). 295 */ 296 complete(&cpu_died); 297 298 /* 299 * Ensure that the cache lines associated with that completion are 300 * written out. This covers the case where _this_ CPU is doing the 301 * powering down, to ensure that the completion is visible to the 302 * CPU waiting for this one. 303 */ 304 flush_cache_louis(); 305 306 /* 307 * The actual CPU shutdown procedure is at least platform (if not 308 * CPU) specific. This may remove power, or it may simply spin. 309 * 310 * Platforms are generally expected *NOT* to return from this call, 311 * although there are some which do because they have no way to 312 * power down the CPU. These platforms are the _only_ reason we 313 * have a return path which uses the fragment of assembly below. 314 * 315 * The return path should not be used for platforms which can 316 * power off the CPU. 317 */ 318 if (smp_ops.cpu_die) 319 smp_ops.cpu_die(cpu); 320 321 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 322 cpu); 323 324 /* 325 * Do not return to the idle loop - jump back to the secondary 326 * cpu initialisation. There's some initialisation which needs 327 * to be repeated to undo the effects of taking the CPU offline. 328 */ 329 __asm__("mov sp, %0\n" 330 " mov fp, #0\n" 331 " b secondary_start_kernel" 332 : 333 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 334 } 335 #endif /* CONFIG_HOTPLUG_CPU */ 336 337 /* 338 * Called by both boot and secondaries to move global data into 339 * per-processor storage. 340 */ 341 static void smp_store_cpu_info(unsigned int cpuid) 342 { 343 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 344 345 cpu_info->loops_per_jiffy = loops_per_jiffy; 346 cpu_info->cpuid = read_cpuid_id(); 347 348 store_cpu_topology(cpuid); 349 } 350 351 /* 352 * This is the secondary CPU boot entry. We're using this CPUs 353 * idle thread stack, but a set of temporary page tables. 354 */ 355 asmlinkage void secondary_start_kernel(void) 356 { 357 struct mm_struct *mm = &init_mm; 358 unsigned int cpu; 359 360 /* 361 * The identity mapping is uncached (strongly ordered), so 362 * switch away from it before attempting any exclusive accesses. 363 */ 364 cpu_switch_mm(mm->pgd, mm); 365 local_flush_bp_all(); 366 enter_lazy_tlb(mm, current); 367 local_flush_tlb_all(); 368 369 /* 370 * All kernel threads share the same mm context; grab a 371 * reference and switch to it. 372 */ 373 cpu = smp_processor_id(); 374 atomic_inc(&mm->mm_count); 375 current->active_mm = mm; 376 cpumask_set_cpu(cpu, mm_cpumask(mm)); 377 378 cpu_init(); 379 380 pr_debug("CPU%u: Booted secondary processor\n", cpu); 381 382 preempt_disable(); 383 trace_hardirqs_off(); 384 385 /* 386 * Give the platform a chance to do its own initialisation. 387 */ 388 if (smp_ops.smp_secondary_init) 389 smp_ops.smp_secondary_init(cpu); 390 391 notify_cpu_starting(cpu); 392 393 calibrate_delay(); 394 395 smp_store_cpu_info(cpu); 396 397 /* 398 * OK, now it's safe to let the boot CPU continue. Wait for 399 * the CPU migration code to notice that the CPU is online 400 * before we continue - which happens after __cpu_up returns. 401 */ 402 set_cpu_online(cpu, true); 403 complete(&cpu_running); 404 405 local_irq_enable(); 406 local_fiq_enable(); 407 local_abt_enable(); 408 409 /* 410 * OK, it's off to the idle thread for us 411 */ 412 cpu_startup_entry(CPUHP_ONLINE); 413 } 414 415 void __init smp_cpus_done(unsigned int max_cpus) 416 { 417 int cpu; 418 unsigned long bogosum = 0; 419 420 for_each_online_cpu(cpu) 421 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 422 423 printk(KERN_INFO "SMP: Total of %d processors activated " 424 "(%lu.%02lu BogoMIPS).\n", 425 num_online_cpus(), 426 bogosum / (500000/HZ), 427 (bogosum / (5000/HZ)) % 100); 428 429 hyp_mode_check(); 430 } 431 432 void __init smp_prepare_boot_cpu(void) 433 { 434 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 435 } 436 437 void __init smp_prepare_cpus(unsigned int max_cpus) 438 { 439 unsigned int ncores = num_possible_cpus(); 440 441 init_cpu_topology(); 442 443 smp_store_cpu_info(smp_processor_id()); 444 445 /* 446 * are we trying to boot more cores than exist? 447 */ 448 if (max_cpus > ncores) 449 max_cpus = ncores; 450 if (ncores > 1 && max_cpus) { 451 /* 452 * Initialise the present map, which describes the set of CPUs 453 * actually populated at the present time. A platform should 454 * re-initialize the map in the platforms smp_prepare_cpus() 455 * if present != possible (e.g. physical hotplug). 456 */ 457 init_cpu_present(cpu_possible_mask); 458 459 /* 460 * Initialise the SCU if there are more than one CPU 461 * and let them know where to start. 462 */ 463 if (smp_ops.smp_prepare_cpus) 464 smp_ops.smp_prepare_cpus(max_cpus); 465 } 466 } 467 468 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 469 470 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 471 { 472 if (!__smp_cross_call) 473 __smp_cross_call = fn; 474 } 475 476 static const char *ipi_types[NR_IPI] __tracepoint_string = { 477 #define S(x,s) [x] = s 478 S(IPI_WAKEUP, "CPU wakeup interrupts"), 479 S(IPI_TIMER, "Timer broadcast interrupts"), 480 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 481 S(IPI_CALL_FUNC, "Function call interrupts"), 482 S(IPI_CPU_STOP, "CPU stop interrupts"), 483 S(IPI_IRQ_WORK, "IRQ work interrupts"), 484 S(IPI_COMPLETION, "completion interrupts"), 485 }; 486 487 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 488 { 489 trace_ipi_raise(target, ipi_types[ipinr]); 490 __smp_cross_call(target, ipinr); 491 } 492 493 void show_ipi_list(struct seq_file *p, int prec) 494 { 495 unsigned int cpu, i; 496 497 for (i = 0; i < NR_IPI; i++) { 498 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 499 500 for_each_online_cpu(cpu) 501 seq_printf(p, "%10u ", 502 __get_irq_stat(cpu, ipi_irqs[i])); 503 504 seq_printf(p, " %s\n", ipi_types[i]); 505 } 506 } 507 508 u64 smp_irq_stat_cpu(unsigned int cpu) 509 { 510 u64 sum = 0; 511 int i; 512 513 for (i = 0; i < NR_IPI; i++) 514 sum += __get_irq_stat(cpu, ipi_irqs[i]); 515 516 return sum; 517 } 518 519 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 520 { 521 smp_cross_call(mask, IPI_CALL_FUNC); 522 } 523 524 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 525 { 526 smp_cross_call(mask, IPI_WAKEUP); 527 } 528 529 void arch_send_call_function_single_ipi(int cpu) 530 { 531 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 532 } 533 534 #ifdef CONFIG_IRQ_WORK 535 void arch_irq_work_raise(void) 536 { 537 if (arch_irq_work_has_interrupt()) 538 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 539 } 540 #endif 541 542 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 543 void tick_broadcast(const struct cpumask *mask) 544 { 545 smp_cross_call(mask, IPI_TIMER); 546 } 547 #endif 548 549 static DEFINE_RAW_SPINLOCK(stop_lock); 550 551 /* 552 * ipi_cpu_stop - handle IPI from smp_send_stop() 553 */ 554 static void ipi_cpu_stop(unsigned int cpu) 555 { 556 if (system_state == SYSTEM_BOOTING || 557 system_state == SYSTEM_RUNNING) { 558 raw_spin_lock(&stop_lock); 559 pr_crit("CPU%u: stopping\n", cpu); 560 dump_stack(); 561 raw_spin_unlock(&stop_lock); 562 } 563 564 set_cpu_online(cpu, false); 565 566 local_fiq_disable(); 567 local_irq_disable(); 568 569 while (1) 570 cpu_relax(); 571 } 572 573 static DEFINE_PER_CPU(struct completion *, cpu_completion); 574 575 int register_ipi_completion(struct completion *completion, int cpu) 576 { 577 per_cpu(cpu_completion, cpu) = completion; 578 return IPI_COMPLETION; 579 } 580 581 static void ipi_complete(unsigned int cpu) 582 { 583 complete(per_cpu(cpu_completion, cpu)); 584 } 585 586 /* 587 * Main handler for inter-processor interrupts 588 */ 589 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 590 { 591 handle_IPI(ipinr, regs); 592 } 593 594 void handle_IPI(int ipinr, struct pt_regs *regs) 595 { 596 unsigned int cpu = smp_processor_id(); 597 struct pt_regs *old_regs = set_irq_regs(regs); 598 599 if ((unsigned)ipinr < NR_IPI) { 600 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 601 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 602 } 603 604 switch (ipinr) { 605 case IPI_WAKEUP: 606 break; 607 608 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 609 case IPI_TIMER: 610 irq_enter(); 611 tick_receive_broadcast(); 612 irq_exit(); 613 break; 614 #endif 615 616 case IPI_RESCHEDULE: 617 scheduler_ipi(); 618 break; 619 620 case IPI_CALL_FUNC: 621 irq_enter(); 622 generic_smp_call_function_interrupt(); 623 irq_exit(); 624 break; 625 626 case IPI_CPU_STOP: 627 irq_enter(); 628 ipi_cpu_stop(cpu); 629 irq_exit(); 630 break; 631 632 #ifdef CONFIG_IRQ_WORK 633 case IPI_IRQ_WORK: 634 irq_enter(); 635 irq_work_run(); 636 irq_exit(); 637 break; 638 #endif 639 640 case IPI_COMPLETION: 641 irq_enter(); 642 ipi_complete(cpu); 643 irq_exit(); 644 break; 645 646 case IPI_CPU_BACKTRACE: 647 irq_enter(); 648 nmi_cpu_backtrace(regs); 649 irq_exit(); 650 break; 651 652 default: 653 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 654 cpu, ipinr); 655 break; 656 } 657 658 if ((unsigned)ipinr < NR_IPI) 659 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 660 set_irq_regs(old_regs); 661 } 662 663 void smp_send_reschedule(int cpu) 664 { 665 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 666 } 667 668 void smp_send_stop(void) 669 { 670 unsigned long timeout; 671 struct cpumask mask; 672 673 cpumask_copy(&mask, cpu_online_mask); 674 cpumask_clear_cpu(smp_processor_id(), &mask); 675 if (!cpumask_empty(&mask)) 676 smp_cross_call(&mask, IPI_CPU_STOP); 677 678 /* Wait up to one second for other CPUs to stop */ 679 timeout = USEC_PER_SEC; 680 while (num_online_cpus() > 1 && timeout--) 681 udelay(1); 682 683 if (num_online_cpus() > 1) 684 pr_warn("SMP: failed to stop secondary CPUs\n"); 685 } 686 687 /* 688 * not supported here 689 */ 690 int setup_profiling_timer(unsigned int multiplier) 691 { 692 return -EINVAL; 693 } 694 695 #ifdef CONFIG_CPU_FREQ 696 697 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 698 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 699 static unsigned long global_l_p_j_ref; 700 static unsigned long global_l_p_j_ref_freq; 701 702 static int cpufreq_callback(struct notifier_block *nb, 703 unsigned long val, void *data) 704 { 705 struct cpufreq_freqs *freq = data; 706 int cpu = freq->cpu; 707 708 if (freq->flags & CPUFREQ_CONST_LOOPS) 709 return NOTIFY_OK; 710 711 if (!per_cpu(l_p_j_ref, cpu)) { 712 per_cpu(l_p_j_ref, cpu) = 713 per_cpu(cpu_data, cpu).loops_per_jiffy; 714 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 715 if (!global_l_p_j_ref) { 716 global_l_p_j_ref = loops_per_jiffy; 717 global_l_p_j_ref_freq = freq->old; 718 } 719 } 720 721 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 722 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 723 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 724 global_l_p_j_ref_freq, 725 freq->new); 726 per_cpu(cpu_data, cpu).loops_per_jiffy = 727 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 728 per_cpu(l_p_j_ref_freq, cpu), 729 freq->new); 730 } 731 return NOTIFY_OK; 732 } 733 734 static struct notifier_block cpufreq_notifier = { 735 .notifier_call = cpufreq_callback, 736 }; 737 738 static int __init register_cpufreq_notifier(void) 739 { 740 return cpufreq_register_notifier(&cpufreq_notifier, 741 CPUFREQ_TRANSITION_NOTIFIER); 742 } 743 core_initcall(register_cpufreq_notifier); 744 745 #endif 746 747 static void raise_nmi(cpumask_t *mask) 748 { 749 /* 750 * Generate the backtrace directly if we are running in a calling 751 * context that is not preemptible by the backtrace IPI. Note 752 * that nmi_cpu_backtrace() automatically removes the current cpu 753 * from mask. 754 */ 755 if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled()) 756 nmi_cpu_backtrace(NULL); 757 758 smp_cross_call(mask, IPI_CPU_BACKTRACE); 759 } 760 761 void arch_trigger_all_cpu_backtrace(bool include_self) 762 { 763 nmi_trigger_all_cpu_backtrace(include_self, raise_nmi); 764 } 765