1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/kernel/smp.c 4 * 5 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 6 */ 7 #include <linux/module.h> 8 #include <linux/delay.h> 9 #include <linux/init.h> 10 #include <linux/spinlock.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/task_stack.h> 14 #include <linux/interrupt.h> 15 #include <linux/cache.h> 16 #include <linux/profile.h> 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/err.h> 20 #include <linux/cpu.h> 21 #include <linux/seq_file.h> 22 #include <linux/irq.h> 23 #include <linux/nmi.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/bugs.h> 32 #include <asm/smp.h> 33 #include <asm/cacheflush.h> 34 #include <asm/cpu.h> 35 #include <asm/cputype.h> 36 #include <asm/exception.h> 37 #include <asm/idmap.h> 38 #include <asm/topology.h> 39 #include <asm/mmu_context.h> 40 #include <asm/procinfo.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 #define CREATE_TRACE_POINTS 51 #include <trace/events/ipi.h> 52 53 /* 54 * as from 2.5, kernels no longer have an init_tasks structure 55 * so we need some other way of telling a new secondary core 56 * where to place its SVC stack 57 */ 58 struct secondary_data secondary_data; 59 60 enum ipi_msg_type { 61 IPI_WAKEUP, 62 IPI_TIMER, 63 IPI_RESCHEDULE, 64 IPI_CALL_FUNC, 65 IPI_CPU_STOP, 66 IPI_IRQ_WORK, 67 IPI_COMPLETION, 68 /* 69 * CPU_BACKTRACE is special and not included in NR_IPI 70 * or tracable with trace_ipi_* 71 */ 72 IPI_CPU_BACKTRACE, 73 /* 74 * SGI8-15 can be reserved by secure firmware, and thus may 75 * not be usable by the kernel. Please keep the above limited 76 * to at most 8 entries. 77 */ 78 }; 79 80 static DECLARE_COMPLETION(cpu_running); 81 82 static struct smp_operations smp_ops __ro_after_init; 83 84 void __init smp_set_ops(const struct smp_operations *ops) 85 { 86 if (ops) 87 smp_ops = *ops; 88 }; 89 90 static unsigned long get_arch_pgd(pgd_t *pgd) 91 { 92 #ifdef CONFIG_ARM_LPAE 93 return __phys_to_pfn(virt_to_phys(pgd)); 94 #else 95 return virt_to_phys(pgd); 96 #endif 97 } 98 99 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) 100 static int secondary_biglittle_prepare(unsigned int cpu) 101 { 102 if (!cpu_vtable[cpu]) 103 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL); 104 105 return cpu_vtable[cpu] ? 0 : -ENOMEM; 106 } 107 108 static void secondary_biglittle_init(void) 109 { 110 init_proc_vtable(lookup_processor(read_cpuid_id())->proc); 111 } 112 #else 113 static int secondary_biglittle_prepare(unsigned int cpu) 114 { 115 return 0; 116 } 117 118 static void secondary_biglittle_init(void) 119 { 120 } 121 #endif 122 123 int __cpu_up(unsigned int cpu, struct task_struct *idle) 124 { 125 int ret; 126 127 if (!smp_ops.smp_boot_secondary) 128 return -ENOSYS; 129 130 ret = secondary_biglittle_prepare(cpu); 131 if (ret) 132 return ret; 133 134 /* 135 * We need to tell the secondary core where to find 136 * its stack and the page tables. 137 */ 138 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 139 #ifdef CONFIG_ARM_MPU 140 secondary_data.mpu_rgn_info = &mpu_rgn_info; 141 #endif 142 143 #ifdef CONFIG_MMU 144 secondary_data.pgdir = virt_to_phys(idmap_pgd); 145 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 146 #endif 147 sync_cache_w(&secondary_data); 148 149 /* 150 * Now bring the CPU into our world. 151 */ 152 ret = smp_ops.smp_boot_secondary(cpu, idle); 153 if (ret == 0) { 154 /* 155 * CPU was successfully started, wait for it 156 * to come online or time out. 157 */ 158 wait_for_completion_timeout(&cpu_running, 159 msecs_to_jiffies(1000)); 160 161 if (!cpu_online(cpu)) { 162 pr_crit("CPU%u: failed to come online\n", cpu); 163 ret = -EIO; 164 } 165 } else { 166 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 167 } 168 169 170 memset(&secondary_data, 0, sizeof(secondary_data)); 171 return ret; 172 } 173 174 /* platform specific SMP operations */ 175 void __init smp_init_cpus(void) 176 { 177 if (smp_ops.smp_init_cpus) 178 smp_ops.smp_init_cpus(); 179 } 180 181 int platform_can_secondary_boot(void) 182 { 183 return !!smp_ops.smp_boot_secondary; 184 } 185 186 int platform_can_cpu_hotplug(void) 187 { 188 #ifdef CONFIG_HOTPLUG_CPU 189 if (smp_ops.cpu_kill) 190 return 1; 191 #endif 192 193 return 0; 194 } 195 196 #ifdef CONFIG_HOTPLUG_CPU 197 static int platform_cpu_kill(unsigned int cpu) 198 { 199 if (smp_ops.cpu_kill) 200 return smp_ops.cpu_kill(cpu); 201 return 1; 202 } 203 204 static int platform_cpu_disable(unsigned int cpu) 205 { 206 if (smp_ops.cpu_disable) 207 return smp_ops.cpu_disable(cpu); 208 209 return 0; 210 } 211 212 int platform_can_hotplug_cpu(unsigned int cpu) 213 { 214 /* cpu_die must be specified to support hotplug */ 215 if (!smp_ops.cpu_die) 216 return 0; 217 218 if (smp_ops.cpu_can_disable) 219 return smp_ops.cpu_can_disable(cpu); 220 221 /* 222 * By default, allow disabling all CPUs except the first one, 223 * since this is special on a lot of platforms, e.g. because 224 * of clock tick interrupts. 225 */ 226 return cpu != 0; 227 } 228 229 /* 230 * __cpu_disable runs on the processor to be shutdown. 231 */ 232 int __cpu_disable(void) 233 { 234 unsigned int cpu = smp_processor_id(); 235 int ret; 236 237 ret = platform_cpu_disable(cpu); 238 if (ret) 239 return ret; 240 241 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY 242 remove_cpu_topology(cpu); 243 #endif 244 245 /* 246 * Take this CPU offline. Once we clear this, we can't return, 247 * and we must not schedule until we're ready to give up the cpu. 248 */ 249 set_cpu_online(cpu, false); 250 251 /* 252 * OK - migrate IRQs away from this CPU 253 */ 254 irq_migrate_all_off_this_cpu(); 255 256 /* 257 * Flush user cache and TLB mappings, and then remove this CPU 258 * from the vm mask set of all processes. 259 * 260 * Caches are flushed to the Level of Unification Inner Shareable 261 * to write-back dirty lines to unified caches shared by all CPUs. 262 */ 263 flush_cache_louis(); 264 local_flush_tlb_all(); 265 266 return 0; 267 } 268 269 /* 270 * called on the thread which is asking for a CPU to be shutdown - 271 * waits until shutdown has completed, or it is timed out. 272 */ 273 void __cpu_die(unsigned int cpu) 274 { 275 if (!cpu_wait_death(cpu, 5)) { 276 pr_err("CPU%u: cpu didn't die\n", cpu); 277 return; 278 } 279 pr_debug("CPU%u: shutdown\n", cpu); 280 281 clear_tasks_mm_cpumask(cpu); 282 /* 283 * platform_cpu_kill() is generally expected to do the powering off 284 * and/or cutting of clocks to the dying CPU. Optionally, this may 285 * be done by the CPU which is dying in preference to supporting 286 * this call, but that means there is _no_ synchronisation between 287 * the requesting CPU and the dying CPU actually losing power. 288 */ 289 if (!platform_cpu_kill(cpu)) 290 pr_err("CPU%u: unable to kill\n", cpu); 291 } 292 293 /* 294 * Called from the idle thread for the CPU which has been shutdown. 295 * 296 * Note that we disable IRQs here, but do not re-enable them 297 * before returning to the caller. This is also the behaviour 298 * of the other hotplug-cpu capable cores, so presumably coming 299 * out of idle fixes this. 300 */ 301 void arch_cpu_idle_dead(void) 302 { 303 unsigned int cpu = smp_processor_id(); 304 305 idle_task_exit(); 306 307 local_irq_disable(); 308 309 /* 310 * Flush the data out of the L1 cache for this CPU. This must be 311 * before the completion to ensure that data is safely written out 312 * before platform_cpu_kill() gets called - which may disable 313 * *this* CPU and power down its cache. 314 */ 315 flush_cache_louis(); 316 317 /* 318 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 319 * this returns, power and/or clocks can be removed at any point 320 * from this CPU and its cache by platform_cpu_kill(). 321 */ 322 (void)cpu_report_death(); 323 324 /* 325 * Ensure that the cache lines associated with that completion are 326 * written out. This covers the case where _this_ CPU is doing the 327 * powering down, to ensure that the completion is visible to the 328 * CPU waiting for this one. 329 */ 330 flush_cache_louis(); 331 332 /* 333 * The actual CPU shutdown procedure is at least platform (if not 334 * CPU) specific. This may remove power, or it may simply spin. 335 * 336 * Platforms are generally expected *NOT* to return from this call, 337 * although there are some which do because they have no way to 338 * power down the CPU. These platforms are the _only_ reason we 339 * have a return path which uses the fragment of assembly below. 340 * 341 * The return path should not be used for platforms which can 342 * power off the CPU. 343 */ 344 if (smp_ops.cpu_die) 345 smp_ops.cpu_die(cpu); 346 347 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 348 cpu); 349 350 /* 351 * Do not return to the idle loop - jump back to the secondary 352 * cpu initialisation. There's some initialisation which needs 353 * to be repeated to undo the effects of taking the CPU offline. 354 */ 355 __asm__("mov sp, %0\n" 356 " mov fp, #0\n" 357 " b secondary_start_kernel" 358 : 359 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 360 } 361 #endif /* CONFIG_HOTPLUG_CPU */ 362 363 /* 364 * Called by both boot and secondaries to move global data into 365 * per-processor storage. 366 */ 367 static void smp_store_cpu_info(unsigned int cpuid) 368 { 369 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 370 371 cpu_info->loops_per_jiffy = loops_per_jiffy; 372 cpu_info->cpuid = read_cpuid_id(); 373 374 store_cpu_topology(cpuid); 375 check_cpu_icache_size(cpuid); 376 } 377 378 /* 379 * This is the secondary CPU boot entry. We're using this CPUs 380 * idle thread stack, but a set of temporary page tables. 381 */ 382 asmlinkage void secondary_start_kernel(void) 383 { 384 struct mm_struct *mm = &init_mm; 385 unsigned int cpu; 386 387 secondary_biglittle_init(); 388 389 /* 390 * The identity mapping is uncached (strongly ordered), so 391 * switch away from it before attempting any exclusive accesses. 392 */ 393 cpu_switch_mm(mm->pgd, mm); 394 local_flush_bp_all(); 395 enter_lazy_tlb(mm, current); 396 local_flush_tlb_all(); 397 398 /* 399 * All kernel threads share the same mm context; grab a 400 * reference and switch to it. 401 */ 402 cpu = smp_processor_id(); 403 mmgrab(mm); 404 current->active_mm = mm; 405 cpumask_set_cpu(cpu, mm_cpumask(mm)); 406 407 cpu_init(); 408 409 #ifndef CONFIG_MMU 410 setup_vectors_base(); 411 #endif 412 pr_debug("CPU%u: Booted secondary processor\n", cpu); 413 414 preempt_disable(); 415 trace_hardirqs_off(); 416 417 /* 418 * Give the platform a chance to do its own initialisation. 419 */ 420 if (smp_ops.smp_secondary_init) 421 smp_ops.smp_secondary_init(cpu); 422 423 notify_cpu_starting(cpu); 424 425 calibrate_delay(); 426 427 smp_store_cpu_info(cpu); 428 429 /* 430 * OK, now it's safe to let the boot CPU continue. Wait for 431 * the CPU migration code to notice that the CPU is online 432 * before we continue - which happens after __cpu_up returns. 433 */ 434 set_cpu_online(cpu, true); 435 436 check_other_bugs(); 437 438 complete(&cpu_running); 439 440 local_irq_enable(); 441 local_fiq_enable(); 442 local_abt_enable(); 443 444 /* 445 * OK, it's off to the idle thread for us 446 */ 447 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 448 } 449 450 void __init smp_cpus_done(unsigned int max_cpus) 451 { 452 int cpu; 453 unsigned long bogosum = 0; 454 455 for_each_online_cpu(cpu) 456 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 457 458 printk(KERN_INFO "SMP: Total of %d processors activated " 459 "(%lu.%02lu BogoMIPS).\n", 460 num_online_cpus(), 461 bogosum / (500000/HZ), 462 (bogosum / (5000/HZ)) % 100); 463 464 hyp_mode_check(); 465 } 466 467 void __init smp_prepare_boot_cpu(void) 468 { 469 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 470 } 471 472 void __init smp_prepare_cpus(unsigned int max_cpus) 473 { 474 unsigned int ncores = num_possible_cpus(); 475 476 init_cpu_topology(); 477 478 smp_store_cpu_info(smp_processor_id()); 479 480 /* 481 * are we trying to boot more cores than exist? 482 */ 483 if (max_cpus > ncores) 484 max_cpus = ncores; 485 if (ncores > 1 && max_cpus) { 486 /* 487 * Initialise the present map, which describes the set of CPUs 488 * actually populated at the present time. A platform should 489 * re-initialize the map in the platforms smp_prepare_cpus() 490 * if present != possible (e.g. physical hotplug). 491 */ 492 init_cpu_present(cpu_possible_mask); 493 494 /* 495 * Initialise the SCU if there are more than one CPU 496 * and let them know where to start. 497 */ 498 if (smp_ops.smp_prepare_cpus) 499 smp_ops.smp_prepare_cpus(max_cpus); 500 } 501 } 502 503 static void (*__smp_cross_call)(const struct cpumask *, unsigned int); 504 505 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 506 { 507 if (!__smp_cross_call) 508 __smp_cross_call = fn; 509 } 510 511 static const char *ipi_types[NR_IPI] __tracepoint_string = { 512 #define S(x,s) [x] = s 513 S(IPI_WAKEUP, "CPU wakeup interrupts"), 514 S(IPI_TIMER, "Timer broadcast interrupts"), 515 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 516 S(IPI_CALL_FUNC, "Function call interrupts"), 517 S(IPI_CPU_STOP, "CPU stop interrupts"), 518 S(IPI_IRQ_WORK, "IRQ work interrupts"), 519 S(IPI_COMPLETION, "completion interrupts"), 520 }; 521 522 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) 523 { 524 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]); 525 __smp_cross_call(target, ipinr); 526 } 527 528 void show_ipi_list(struct seq_file *p, int prec) 529 { 530 unsigned int cpu, i; 531 532 for (i = 0; i < NR_IPI; i++) { 533 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 534 535 for_each_online_cpu(cpu) 536 seq_printf(p, "%10u ", 537 __get_irq_stat(cpu, ipi_irqs[i])); 538 539 seq_printf(p, " %s\n", ipi_types[i]); 540 } 541 } 542 543 u64 smp_irq_stat_cpu(unsigned int cpu) 544 { 545 u64 sum = 0; 546 int i; 547 548 for (i = 0; i < NR_IPI; i++) 549 sum += __get_irq_stat(cpu, ipi_irqs[i]); 550 551 return sum; 552 } 553 554 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 555 { 556 smp_cross_call(mask, IPI_CALL_FUNC); 557 } 558 559 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 560 { 561 smp_cross_call(mask, IPI_WAKEUP); 562 } 563 564 void arch_send_call_function_single_ipi(int cpu) 565 { 566 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); 567 } 568 569 #ifdef CONFIG_IRQ_WORK 570 void arch_irq_work_raise(void) 571 { 572 if (arch_irq_work_has_interrupt()) 573 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 574 } 575 #endif 576 577 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 578 void tick_broadcast(const struct cpumask *mask) 579 { 580 smp_cross_call(mask, IPI_TIMER); 581 } 582 #endif 583 584 static DEFINE_RAW_SPINLOCK(stop_lock); 585 586 /* 587 * ipi_cpu_stop - handle IPI from smp_send_stop() 588 */ 589 static void ipi_cpu_stop(unsigned int cpu) 590 { 591 if (system_state <= SYSTEM_RUNNING) { 592 raw_spin_lock(&stop_lock); 593 pr_crit("CPU%u: stopping\n", cpu); 594 dump_stack(); 595 raw_spin_unlock(&stop_lock); 596 } 597 598 set_cpu_online(cpu, false); 599 600 local_fiq_disable(); 601 local_irq_disable(); 602 603 while (1) { 604 cpu_relax(); 605 wfe(); 606 } 607 } 608 609 static DEFINE_PER_CPU(struct completion *, cpu_completion); 610 611 int register_ipi_completion(struct completion *completion, int cpu) 612 { 613 per_cpu(cpu_completion, cpu) = completion; 614 return IPI_COMPLETION; 615 } 616 617 static void ipi_complete(unsigned int cpu) 618 { 619 complete(per_cpu(cpu_completion, cpu)); 620 } 621 622 /* 623 * Main handler for inter-processor interrupts 624 */ 625 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 626 { 627 handle_IPI(ipinr, regs); 628 } 629 630 void handle_IPI(int ipinr, struct pt_regs *regs) 631 { 632 unsigned int cpu = smp_processor_id(); 633 struct pt_regs *old_regs = set_irq_regs(regs); 634 635 if ((unsigned)ipinr < NR_IPI) { 636 trace_ipi_entry_rcuidle(ipi_types[ipinr]); 637 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 638 } 639 640 switch (ipinr) { 641 case IPI_WAKEUP: 642 break; 643 644 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 645 case IPI_TIMER: 646 irq_enter(); 647 tick_receive_broadcast(); 648 irq_exit(); 649 break; 650 #endif 651 652 case IPI_RESCHEDULE: 653 scheduler_ipi(); 654 break; 655 656 case IPI_CALL_FUNC: 657 irq_enter(); 658 generic_smp_call_function_interrupt(); 659 irq_exit(); 660 break; 661 662 case IPI_CPU_STOP: 663 irq_enter(); 664 ipi_cpu_stop(cpu); 665 irq_exit(); 666 break; 667 668 #ifdef CONFIG_IRQ_WORK 669 case IPI_IRQ_WORK: 670 irq_enter(); 671 irq_work_run(); 672 irq_exit(); 673 break; 674 #endif 675 676 case IPI_COMPLETION: 677 irq_enter(); 678 ipi_complete(cpu); 679 irq_exit(); 680 break; 681 682 case IPI_CPU_BACKTRACE: 683 printk_nmi_enter(); 684 irq_enter(); 685 nmi_cpu_backtrace(regs); 686 irq_exit(); 687 printk_nmi_exit(); 688 break; 689 690 default: 691 pr_crit("CPU%u: Unknown IPI message 0x%x\n", 692 cpu, ipinr); 693 break; 694 } 695 696 if ((unsigned)ipinr < NR_IPI) 697 trace_ipi_exit_rcuidle(ipi_types[ipinr]); 698 set_irq_regs(old_regs); 699 } 700 701 void smp_send_reschedule(int cpu) 702 { 703 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 704 } 705 706 void smp_send_stop(void) 707 { 708 unsigned long timeout; 709 struct cpumask mask; 710 711 cpumask_copy(&mask, cpu_online_mask); 712 cpumask_clear_cpu(smp_processor_id(), &mask); 713 if (!cpumask_empty(&mask)) 714 smp_cross_call(&mask, IPI_CPU_STOP); 715 716 /* Wait up to one second for other CPUs to stop */ 717 timeout = USEC_PER_SEC; 718 while (num_online_cpus() > 1 && timeout--) 719 udelay(1); 720 721 if (num_online_cpus() > 1) 722 pr_warn("SMP: failed to stop secondary CPUs\n"); 723 } 724 725 /* In case panic() and panic() called at the same time on CPU1 and CPU2, 726 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop() 727 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online, 728 * kdump fails. So split out the panic_smp_self_stop() and add 729 * set_cpu_online(smp_processor_id(), false). 730 */ 731 void panic_smp_self_stop(void) 732 { 733 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n", 734 smp_processor_id()); 735 set_cpu_online(smp_processor_id(), false); 736 while (1) 737 cpu_relax(); 738 } 739 740 /* 741 * not supported here 742 */ 743 int setup_profiling_timer(unsigned int multiplier) 744 { 745 return -EINVAL; 746 } 747 748 #ifdef CONFIG_CPU_FREQ 749 750 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 751 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 752 static unsigned long global_l_p_j_ref; 753 static unsigned long global_l_p_j_ref_freq; 754 755 static int cpufreq_callback(struct notifier_block *nb, 756 unsigned long val, void *data) 757 { 758 struct cpufreq_freqs *freq = data; 759 struct cpumask *cpus = freq->policy->cpus; 760 int cpu, first = cpumask_first(cpus); 761 unsigned int lpj; 762 763 if (freq->flags & CPUFREQ_CONST_LOOPS) 764 return NOTIFY_OK; 765 766 if (!per_cpu(l_p_j_ref, first)) { 767 for_each_cpu(cpu, cpus) { 768 per_cpu(l_p_j_ref, cpu) = 769 per_cpu(cpu_data, cpu).loops_per_jiffy; 770 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 771 } 772 773 if (!global_l_p_j_ref) { 774 global_l_p_j_ref = loops_per_jiffy; 775 global_l_p_j_ref_freq = freq->old; 776 } 777 } 778 779 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 780 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 781 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 782 global_l_p_j_ref_freq, 783 freq->new); 784 785 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first), 786 per_cpu(l_p_j_ref_freq, first), freq->new); 787 for_each_cpu(cpu, cpus) 788 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj; 789 } 790 return NOTIFY_OK; 791 } 792 793 static struct notifier_block cpufreq_notifier = { 794 .notifier_call = cpufreq_callback, 795 }; 796 797 static int __init register_cpufreq_notifier(void) 798 { 799 return cpufreq_register_notifier(&cpufreq_notifier, 800 CPUFREQ_TRANSITION_NOTIFIER); 801 } 802 core_initcall(register_cpufreq_notifier); 803 804 #endif 805 806 static void raise_nmi(cpumask_t *mask) 807 { 808 __smp_cross_call(mask, IPI_CPU_BACKTRACE); 809 } 810 811 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self) 812 { 813 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi); 814 } 815