xref: /openbmc/linux/arch/arm/kernel/smp.c (revision 64c70b1c)
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/cpu.h>
21 #include <linux/smp.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 
25 #include <asm/atomic.h>
26 #include <asm/cacheflush.h>
27 #include <asm/cpu.h>
28 #include <asm/mmu_context.h>
29 #include <asm/pgtable.h>
30 #include <asm/pgalloc.h>
31 #include <asm/processor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/ptrace.h>
34 
35 /*
36  * bitmask of present and online CPUs.
37  * The present bitmask indicates that the CPU is physically present.
38  * The online bitmask indicates that the CPU is up and running.
39  */
40 cpumask_t cpu_possible_map;
41 EXPORT_SYMBOL(cpu_possible_map);
42 cpumask_t cpu_online_map;
43 EXPORT_SYMBOL(cpu_online_map);
44 
45 /*
46  * as from 2.5, kernels no longer have an init_tasks structure
47  * so we need some other way of telling a new secondary core
48  * where to place its SVC stack
49  */
50 struct secondary_data secondary_data;
51 
52 /*
53  * structures for inter-processor calls
54  * - A collection of single bit ipi messages.
55  */
56 struct ipi_data {
57 	spinlock_t lock;
58 	unsigned long ipi_count;
59 	unsigned long bits;
60 };
61 
62 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
63 	.lock	= SPIN_LOCK_UNLOCKED,
64 };
65 
66 enum ipi_msg_type {
67 	IPI_TIMER,
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 };
72 
73 struct smp_call_struct {
74 	void (*func)(void *info);
75 	void *info;
76 	int wait;
77 	cpumask_t pending;
78 	cpumask_t unfinished;
79 };
80 
81 static struct smp_call_struct * volatile smp_call_function_data;
82 static DEFINE_SPINLOCK(smp_call_function_lock);
83 
84 int __cpuinit __cpu_up(unsigned int cpu)
85 {
86 	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
87 	struct task_struct *idle = ci->idle;
88 	pgd_t *pgd;
89 	pmd_t *pmd;
90 	int ret;
91 
92 	/*
93 	 * Spawn a new process manually, if not already done.
94 	 * Grab a pointer to its task struct so we can mess with it
95 	 */
96 	if (!idle) {
97 		idle = fork_idle(cpu);
98 		if (IS_ERR(idle)) {
99 			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
100 			return PTR_ERR(idle);
101 		}
102 		ci->idle = idle;
103 	}
104 
105 	/*
106 	 * Allocate initial page tables to allow the new CPU to
107 	 * enable the MMU safely.  This essentially means a set
108 	 * of our "standard" page tables, with the addition of
109 	 * a 1:1 mapping for the physical address of the kernel.
110 	 */
111 	pgd = pgd_alloc(&init_mm);
112 	pmd = pmd_offset(pgd, PHYS_OFFSET);
113 	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
114 		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
115 
116 	/*
117 	 * We need to tell the secondary core where to find
118 	 * its stack and the page tables.
119 	 */
120 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
121 	secondary_data.pgdir = virt_to_phys(pgd);
122 	wmb();
123 
124 	/*
125 	 * Now bring the CPU into our world.
126 	 */
127 	ret = boot_secondary(cpu, idle);
128 	if (ret == 0) {
129 		unsigned long timeout;
130 
131 		/*
132 		 * CPU was successfully started, wait for it
133 		 * to come online or time out.
134 		 */
135 		timeout = jiffies + HZ;
136 		while (time_before(jiffies, timeout)) {
137 			if (cpu_online(cpu))
138 				break;
139 
140 			udelay(10);
141 			barrier();
142 		}
143 
144 		if (!cpu_online(cpu))
145 			ret = -EIO;
146 	}
147 
148 	secondary_data.stack = NULL;
149 	secondary_data.pgdir = 0;
150 
151 	*pmd_offset(pgd, PHYS_OFFSET) = __pmd(0);
152 	pgd_free(pgd);
153 
154 	if (ret) {
155 		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
156 
157 		/*
158 		 * FIXME: We need to clean up the new idle thread. --rmk
159 		 */
160 	}
161 
162 	return ret;
163 }
164 
165 #ifdef CONFIG_HOTPLUG_CPU
166 /*
167  * __cpu_disable runs on the processor to be shutdown.
168  */
169 int __cpuexit __cpu_disable(void)
170 {
171 	unsigned int cpu = smp_processor_id();
172 	struct task_struct *p;
173 	int ret;
174 
175 	ret = mach_cpu_disable(cpu);
176 	if (ret)
177 		return ret;
178 
179 	/*
180 	 * Take this CPU offline.  Once we clear this, we can't return,
181 	 * and we must not schedule until we're ready to give up the cpu.
182 	 */
183 	cpu_clear(cpu, cpu_online_map);
184 
185 	/*
186 	 * OK - migrate IRQs away from this CPU
187 	 */
188 	migrate_irqs();
189 
190 	/*
191 	 * Stop the local timer for this CPU.
192 	 */
193 	local_timer_stop(cpu);
194 
195 	/*
196 	 * Flush user cache and TLB mappings, and then remove this CPU
197 	 * from the vm mask set of all processes.
198 	 */
199 	flush_cache_all();
200 	local_flush_tlb_all();
201 
202 	read_lock(&tasklist_lock);
203 	for_each_process(p) {
204 		if (p->mm)
205 			cpu_clear(cpu, p->mm->cpu_vm_mask);
206 	}
207 	read_unlock(&tasklist_lock);
208 
209 	return 0;
210 }
211 
212 /*
213  * called on the thread which is asking for a CPU to be shutdown -
214  * waits until shutdown has completed, or it is timed out.
215  */
216 void __cpuexit __cpu_die(unsigned int cpu)
217 {
218 	if (!platform_cpu_kill(cpu))
219 		printk("CPU%u: unable to kill\n", cpu);
220 }
221 
222 /*
223  * Called from the idle thread for the CPU which has been shutdown.
224  *
225  * Note that we disable IRQs here, but do not re-enable them
226  * before returning to the caller. This is also the behaviour
227  * of the other hotplug-cpu capable cores, so presumably coming
228  * out of idle fixes this.
229  */
230 void __cpuexit cpu_die(void)
231 {
232 	unsigned int cpu = smp_processor_id();
233 
234 	local_irq_disable();
235 	idle_task_exit();
236 
237 	/*
238 	 * actual CPU shutdown procedure is at least platform (if not
239 	 * CPU) specific
240 	 */
241 	platform_cpu_die(cpu);
242 
243 	/*
244 	 * Do not return to the idle loop - jump back to the secondary
245 	 * cpu initialisation.  There's some initialisation which needs
246 	 * to be repeated to undo the effects of taking the CPU offline.
247 	 */
248 	__asm__("mov	sp, %0\n"
249 	"	b	secondary_start_kernel"
250 		:
251 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
252 }
253 #endif /* CONFIG_HOTPLUG_CPU */
254 
255 /*
256  * This is the secondary CPU boot entry.  We're using this CPUs
257  * idle thread stack, but a set of temporary page tables.
258  */
259 asmlinkage void __cpuinit secondary_start_kernel(void)
260 {
261 	struct mm_struct *mm = &init_mm;
262 	unsigned int cpu = smp_processor_id();
263 
264 	printk("CPU%u: Booted secondary processor\n", cpu);
265 
266 	/*
267 	 * All kernel threads share the same mm context; grab a
268 	 * reference and switch to it.
269 	 */
270 	atomic_inc(&mm->mm_users);
271 	atomic_inc(&mm->mm_count);
272 	current->active_mm = mm;
273 	cpu_set(cpu, mm->cpu_vm_mask);
274 	cpu_switch_mm(mm->pgd, mm);
275 	enter_lazy_tlb(mm, current);
276 	local_flush_tlb_all();
277 
278 	cpu_init();
279 	preempt_disable();
280 
281 	/*
282 	 * Give the platform a chance to do its own initialisation.
283 	 */
284 	platform_secondary_init(cpu);
285 
286 	/*
287 	 * Enable local interrupts.
288 	 */
289 	local_irq_enable();
290 	local_fiq_enable();
291 
292 	calibrate_delay();
293 
294 	smp_store_cpu_info(cpu);
295 
296 	/*
297 	 * OK, now it's safe to let the boot CPU continue
298 	 */
299 	cpu_set(cpu, cpu_online_map);
300 
301 	/*
302 	 * Setup local timer for this CPU.
303 	 */
304 	local_timer_setup(cpu);
305 
306 	/*
307 	 * OK, it's off to the idle thread for us
308 	 */
309 	cpu_idle();
310 }
311 
312 /*
313  * Called by both boot and secondaries to move global data into
314  * per-processor storage.
315  */
316 void __cpuinit smp_store_cpu_info(unsigned int cpuid)
317 {
318 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
319 
320 	cpu_info->loops_per_jiffy = loops_per_jiffy;
321 }
322 
323 void __init smp_cpus_done(unsigned int max_cpus)
324 {
325 	int cpu;
326 	unsigned long bogosum = 0;
327 
328 	for_each_online_cpu(cpu)
329 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
330 
331 	printk(KERN_INFO "SMP: Total of %d processors activated "
332 	       "(%lu.%02lu BogoMIPS).\n",
333 	       num_online_cpus(),
334 	       bogosum / (500000/HZ),
335 	       (bogosum / (5000/HZ)) % 100);
336 }
337 
338 void __init smp_prepare_boot_cpu(void)
339 {
340 	unsigned int cpu = smp_processor_id();
341 
342 	per_cpu(cpu_data, cpu).idle = current;
343 }
344 
345 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg)
346 {
347 	unsigned long flags;
348 	unsigned int cpu;
349 
350 	local_irq_save(flags);
351 
352 	for_each_cpu_mask(cpu, callmap) {
353 		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
354 
355 		spin_lock(&ipi->lock);
356 		ipi->bits |= 1 << msg;
357 		spin_unlock(&ipi->lock);
358 	}
359 
360 	/*
361 	 * Call the platform specific cross-CPU call function.
362 	 */
363 	smp_cross_call(callmap);
364 
365 	local_irq_restore(flags);
366 }
367 
368 /*
369  * You must not call this function with disabled interrupts, from a
370  * hardware interrupt handler, nor from a bottom half handler.
371  */
372 static int smp_call_function_on_cpu(void (*func)(void *info), void *info,
373 				    int retry, int wait, cpumask_t callmap)
374 {
375 	struct smp_call_struct data;
376 	unsigned long timeout;
377 	int ret = 0;
378 
379 	data.func = func;
380 	data.info = info;
381 	data.wait = wait;
382 
383 	cpu_clear(smp_processor_id(), callmap);
384 	if (cpus_empty(callmap))
385 		goto out;
386 
387 	data.pending = callmap;
388 	if (wait)
389 		data.unfinished = callmap;
390 
391 	/*
392 	 * try to get the mutex on smp_call_function_data
393 	 */
394 	spin_lock(&smp_call_function_lock);
395 	smp_call_function_data = &data;
396 
397 	send_ipi_message(callmap, IPI_CALL_FUNC);
398 
399 	timeout = jiffies + HZ;
400 	while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
401 		barrier();
402 
403 	/*
404 	 * did we time out?
405 	 */
406 	if (!cpus_empty(data.pending)) {
407 		/*
408 		 * this may be causing our panic - report it
409 		 */
410 		printk(KERN_CRIT
411 		       "CPU%u: smp_call_function timeout for %p(%p)\n"
412 		       "      callmap %lx pending %lx, %swait\n",
413 		       smp_processor_id(), func, info, *cpus_addr(callmap),
414 		       *cpus_addr(data.pending), wait ? "" : "no ");
415 
416 		/*
417 		 * TRACE
418 		 */
419 		timeout = jiffies + (5 * HZ);
420 		while (!cpus_empty(data.pending) && time_before(jiffies, timeout))
421 			barrier();
422 
423 		if (cpus_empty(data.pending))
424 			printk(KERN_CRIT "     RESOLVED\n");
425 		else
426 			printk(KERN_CRIT "     STILL STUCK\n");
427 	}
428 
429 	/*
430 	 * whatever happened, we're done with the data, so release it
431 	 */
432 	smp_call_function_data = NULL;
433 	spin_unlock(&smp_call_function_lock);
434 
435 	if (!cpus_empty(data.pending)) {
436 		ret = -ETIMEDOUT;
437 		goto out;
438 	}
439 
440 	if (wait)
441 		while (!cpus_empty(data.unfinished))
442 			barrier();
443  out:
444 
445 	return 0;
446 }
447 
448 int smp_call_function(void (*func)(void *info), void *info, int retry,
449                       int wait)
450 {
451 	return smp_call_function_on_cpu(func, info, retry, wait,
452 					cpu_online_map);
453 }
454 EXPORT_SYMBOL_GPL(smp_call_function);
455 
456 void show_ipi_list(struct seq_file *p)
457 {
458 	unsigned int cpu;
459 
460 	seq_puts(p, "IPI:");
461 
462 	for_each_present_cpu(cpu)
463 		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
464 
465 	seq_putc(p, '\n');
466 }
467 
468 void show_local_irqs(struct seq_file *p)
469 {
470 	unsigned int cpu;
471 
472 	seq_printf(p, "LOC: ");
473 
474 	for_each_present_cpu(cpu)
475 		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
476 
477 	seq_putc(p, '\n');
478 }
479 
480 static void ipi_timer(void)
481 {
482 	irq_enter();
483 	profile_tick(CPU_PROFILING);
484 	update_process_times(user_mode(get_irq_regs()));
485 	irq_exit();
486 }
487 
488 #ifdef CONFIG_LOCAL_TIMERS
489 asmlinkage void __exception do_local_timer(struct pt_regs *regs)
490 {
491 	struct pt_regs *old_regs = set_irq_regs(regs);
492 	int cpu = smp_processor_id();
493 
494 	if (local_timer_ack()) {
495 		irq_stat[cpu].local_timer_irqs++;
496 		ipi_timer();
497 	}
498 
499 	set_irq_regs(old_regs);
500 }
501 #endif
502 
503 /*
504  * ipi_call_function - handle IPI from smp_call_function()
505  *
506  * Note that we copy data out of the cross-call structure and then
507  * let the caller know that we're here and have done with their data
508  */
509 static void ipi_call_function(unsigned int cpu)
510 {
511 	struct smp_call_struct *data = smp_call_function_data;
512 	void (*func)(void *info) = data->func;
513 	void *info = data->info;
514 	int wait = data->wait;
515 
516 	cpu_clear(cpu, data->pending);
517 
518 	func(info);
519 
520 	if (wait)
521 		cpu_clear(cpu, data->unfinished);
522 }
523 
524 static DEFINE_SPINLOCK(stop_lock);
525 
526 /*
527  * ipi_cpu_stop - handle IPI from smp_send_stop()
528  */
529 static void ipi_cpu_stop(unsigned int cpu)
530 {
531 	spin_lock(&stop_lock);
532 	printk(KERN_CRIT "CPU%u: stopping\n", cpu);
533 	dump_stack();
534 	spin_unlock(&stop_lock);
535 
536 	cpu_clear(cpu, cpu_online_map);
537 
538 	local_fiq_disable();
539 	local_irq_disable();
540 
541 	while (1)
542 		cpu_relax();
543 }
544 
545 /*
546  * Main handler for inter-processor interrupts
547  *
548  * For ARM, the ipimask now only identifies a single
549  * category of IPI (Bit 1 IPIs have been replaced by a
550  * different mechanism):
551  *
552  *  Bit 0 - Inter-processor function call
553  */
554 asmlinkage void __exception do_IPI(struct pt_regs *regs)
555 {
556 	unsigned int cpu = smp_processor_id();
557 	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
558 	struct pt_regs *old_regs = set_irq_regs(regs);
559 
560 	ipi->ipi_count++;
561 
562 	for (;;) {
563 		unsigned long msgs;
564 
565 		spin_lock(&ipi->lock);
566 		msgs = ipi->bits;
567 		ipi->bits = 0;
568 		spin_unlock(&ipi->lock);
569 
570 		if (!msgs)
571 			break;
572 
573 		do {
574 			unsigned nextmsg;
575 
576 			nextmsg = msgs & -msgs;
577 			msgs &= ~nextmsg;
578 			nextmsg = ffz(~nextmsg);
579 
580 			switch (nextmsg) {
581 			case IPI_TIMER:
582 				ipi_timer();
583 				break;
584 
585 			case IPI_RESCHEDULE:
586 				/*
587 				 * nothing more to do - eveything is
588 				 * done on the interrupt return path
589 				 */
590 				break;
591 
592 			case IPI_CALL_FUNC:
593 				ipi_call_function(cpu);
594 				break;
595 
596 			case IPI_CPU_STOP:
597 				ipi_cpu_stop(cpu);
598 				break;
599 
600 			default:
601 				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
602 				       cpu, nextmsg);
603 				break;
604 			}
605 		} while (msgs);
606 	}
607 
608 	set_irq_regs(old_regs);
609 }
610 
611 void smp_send_reschedule(int cpu)
612 {
613 	send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE);
614 }
615 
616 void smp_send_timer(void)
617 {
618 	cpumask_t mask = cpu_online_map;
619 	cpu_clear(smp_processor_id(), mask);
620 	send_ipi_message(mask, IPI_TIMER);
621 }
622 
623 void smp_send_stop(void)
624 {
625 	cpumask_t mask = cpu_online_map;
626 	cpu_clear(smp_processor_id(), mask);
627 	send_ipi_message(mask, IPI_CPU_STOP);
628 }
629 
630 /*
631  * not supported here
632  */
633 int __init setup_profiling_timer(unsigned int multiplier)
634 {
635 	return -EINVAL;
636 }
637 
638 static int
639 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait,
640 		 cpumask_t mask)
641 {
642 	int ret = 0;
643 
644 	preempt_disable();
645 
646 	ret = smp_call_function_on_cpu(func, info, retry, wait, mask);
647 	if (cpu_isset(smp_processor_id(), mask))
648 		func(info);
649 
650 	preempt_enable();
651 
652 	return ret;
653 }
654 
655 /**********************************************************************/
656 
657 /*
658  * TLB operations
659  */
660 struct tlb_args {
661 	struct vm_area_struct *ta_vma;
662 	unsigned long ta_start;
663 	unsigned long ta_end;
664 };
665 
666 static inline void ipi_flush_tlb_all(void *ignored)
667 {
668 	local_flush_tlb_all();
669 }
670 
671 static inline void ipi_flush_tlb_mm(void *arg)
672 {
673 	struct mm_struct *mm = (struct mm_struct *)arg;
674 
675 	local_flush_tlb_mm(mm);
676 }
677 
678 static inline void ipi_flush_tlb_page(void *arg)
679 {
680 	struct tlb_args *ta = (struct tlb_args *)arg;
681 
682 	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
683 }
684 
685 static inline void ipi_flush_tlb_kernel_page(void *arg)
686 {
687 	struct tlb_args *ta = (struct tlb_args *)arg;
688 
689 	local_flush_tlb_kernel_page(ta->ta_start);
690 }
691 
692 static inline void ipi_flush_tlb_range(void *arg)
693 {
694 	struct tlb_args *ta = (struct tlb_args *)arg;
695 
696 	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
697 }
698 
699 static inline void ipi_flush_tlb_kernel_range(void *arg)
700 {
701 	struct tlb_args *ta = (struct tlb_args *)arg;
702 
703 	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
704 }
705 
706 void flush_tlb_all(void)
707 {
708 	on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1);
709 }
710 
711 void flush_tlb_mm(struct mm_struct *mm)
712 {
713 	cpumask_t mask = mm->cpu_vm_mask;
714 
715 	on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask);
716 }
717 
718 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
719 {
720 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
721 	struct tlb_args ta;
722 
723 	ta.ta_vma = vma;
724 	ta.ta_start = uaddr;
725 
726 	on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask);
727 }
728 
729 void flush_tlb_kernel_page(unsigned long kaddr)
730 {
731 	struct tlb_args ta;
732 
733 	ta.ta_start = kaddr;
734 
735 	on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1);
736 }
737 
738 void flush_tlb_range(struct vm_area_struct *vma,
739                      unsigned long start, unsigned long end)
740 {
741 	cpumask_t mask = vma->vm_mm->cpu_vm_mask;
742 	struct tlb_args ta;
743 
744 	ta.ta_vma = vma;
745 	ta.ta_start = start;
746 	ta.ta_end = end;
747 
748 	on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask);
749 }
750 
751 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
752 {
753 	struct tlb_args ta;
754 
755 	ta.ta_start = start;
756 	ta.ta_end = end;
757 
758 	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1);
759 }
760