1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/cpu.h> 21 #include <linux/smp.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 25 #include <asm/atomic.h> 26 #include <asm/cacheflush.h> 27 #include <asm/cpu.h> 28 #include <asm/mmu_context.h> 29 #include <asm/pgtable.h> 30 #include <asm/pgalloc.h> 31 #include <asm/processor.h> 32 #include <asm/tlbflush.h> 33 #include <asm/ptrace.h> 34 35 /* 36 * bitmask of present and online CPUs. 37 * The present bitmask indicates that the CPU is physically present. 38 * The online bitmask indicates that the CPU is up and running. 39 */ 40 cpumask_t cpu_possible_map; 41 EXPORT_SYMBOL(cpu_possible_map); 42 cpumask_t cpu_online_map; 43 EXPORT_SYMBOL(cpu_online_map); 44 45 /* 46 * as from 2.5, kernels no longer have an init_tasks structure 47 * so we need some other way of telling a new secondary core 48 * where to place its SVC stack 49 */ 50 struct secondary_data secondary_data; 51 52 /* 53 * structures for inter-processor calls 54 * - A collection of single bit ipi messages. 55 */ 56 struct ipi_data { 57 spinlock_t lock; 58 unsigned long ipi_count; 59 unsigned long bits; 60 }; 61 62 static DEFINE_PER_CPU(struct ipi_data, ipi_data) = { 63 .lock = SPIN_LOCK_UNLOCKED, 64 }; 65 66 enum ipi_msg_type { 67 IPI_TIMER, 68 IPI_RESCHEDULE, 69 IPI_CALL_FUNC, 70 IPI_CPU_STOP, 71 }; 72 73 struct smp_call_struct { 74 void (*func)(void *info); 75 void *info; 76 int wait; 77 cpumask_t pending; 78 cpumask_t unfinished; 79 }; 80 81 static struct smp_call_struct * volatile smp_call_function_data; 82 static DEFINE_SPINLOCK(smp_call_function_lock); 83 84 int __cpuinit __cpu_up(unsigned int cpu) 85 { 86 struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu); 87 struct task_struct *idle = ci->idle; 88 pgd_t *pgd; 89 pmd_t *pmd; 90 int ret; 91 92 /* 93 * Spawn a new process manually, if not already done. 94 * Grab a pointer to its task struct so we can mess with it 95 */ 96 if (!idle) { 97 idle = fork_idle(cpu); 98 if (IS_ERR(idle)) { 99 printk(KERN_ERR "CPU%u: fork() failed\n", cpu); 100 return PTR_ERR(idle); 101 } 102 ci->idle = idle; 103 } 104 105 /* 106 * Allocate initial page tables to allow the new CPU to 107 * enable the MMU safely. This essentially means a set 108 * of our "standard" page tables, with the addition of 109 * a 1:1 mapping for the physical address of the kernel. 110 */ 111 pgd = pgd_alloc(&init_mm); 112 pmd = pmd_offset(pgd, PHYS_OFFSET); 113 *pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) | 114 PMD_TYPE_SECT | PMD_SECT_AP_WRITE); 115 116 /* 117 * We need to tell the secondary core where to find 118 * its stack and the page tables. 119 */ 120 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 121 secondary_data.pgdir = virt_to_phys(pgd); 122 wmb(); 123 124 /* 125 * Now bring the CPU into our world. 126 */ 127 ret = boot_secondary(cpu, idle); 128 if (ret == 0) { 129 unsigned long timeout; 130 131 /* 132 * CPU was successfully started, wait for it 133 * to come online or time out. 134 */ 135 timeout = jiffies + HZ; 136 while (time_before(jiffies, timeout)) { 137 if (cpu_online(cpu)) 138 break; 139 140 udelay(10); 141 barrier(); 142 } 143 144 if (!cpu_online(cpu)) 145 ret = -EIO; 146 } 147 148 secondary_data.stack = NULL; 149 secondary_data.pgdir = 0; 150 151 *pmd_offset(pgd, PHYS_OFFSET) = __pmd(0); 152 pgd_free(pgd); 153 154 if (ret) { 155 printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu); 156 157 /* 158 * FIXME: We need to clean up the new idle thread. --rmk 159 */ 160 } 161 162 return ret; 163 } 164 165 #ifdef CONFIG_HOTPLUG_CPU 166 /* 167 * __cpu_disable runs on the processor to be shutdown. 168 */ 169 int __cpuexit __cpu_disable(void) 170 { 171 unsigned int cpu = smp_processor_id(); 172 struct task_struct *p; 173 int ret; 174 175 ret = mach_cpu_disable(cpu); 176 if (ret) 177 return ret; 178 179 /* 180 * Take this CPU offline. Once we clear this, we can't return, 181 * and we must not schedule until we're ready to give up the cpu. 182 */ 183 cpu_clear(cpu, cpu_online_map); 184 185 /* 186 * OK - migrate IRQs away from this CPU 187 */ 188 migrate_irqs(); 189 190 /* 191 * Stop the local timer for this CPU. 192 */ 193 local_timer_stop(cpu); 194 195 /* 196 * Flush user cache and TLB mappings, and then remove this CPU 197 * from the vm mask set of all processes. 198 */ 199 flush_cache_all(); 200 local_flush_tlb_all(); 201 202 read_lock(&tasklist_lock); 203 for_each_process(p) { 204 if (p->mm) 205 cpu_clear(cpu, p->mm->cpu_vm_mask); 206 } 207 read_unlock(&tasklist_lock); 208 209 return 0; 210 } 211 212 /* 213 * called on the thread which is asking for a CPU to be shutdown - 214 * waits until shutdown has completed, or it is timed out. 215 */ 216 void __cpuexit __cpu_die(unsigned int cpu) 217 { 218 if (!platform_cpu_kill(cpu)) 219 printk("CPU%u: unable to kill\n", cpu); 220 } 221 222 /* 223 * Called from the idle thread for the CPU which has been shutdown. 224 * 225 * Note that we disable IRQs here, but do not re-enable them 226 * before returning to the caller. This is also the behaviour 227 * of the other hotplug-cpu capable cores, so presumably coming 228 * out of idle fixes this. 229 */ 230 void __cpuexit cpu_die(void) 231 { 232 unsigned int cpu = smp_processor_id(); 233 234 local_irq_disable(); 235 idle_task_exit(); 236 237 /* 238 * actual CPU shutdown procedure is at least platform (if not 239 * CPU) specific 240 */ 241 platform_cpu_die(cpu); 242 243 /* 244 * Do not return to the idle loop - jump back to the secondary 245 * cpu initialisation. There's some initialisation which needs 246 * to be repeated to undo the effects of taking the CPU offline. 247 */ 248 __asm__("mov sp, %0\n" 249 " b secondary_start_kernel" 250 : 251 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 252 } 253 #endif /* CONFIG_HOTPLUG_CPU */ 254 255 /* 256 * This is the secondary CPU boot entry. We're using this CPUs 257 * idle thread stack, but a set of temporary page tables. 258 */ 259 asmlinkage void __cpuinit secondary_start_kernel(void) 260 { 261 struct mm_struct *mm = &init_mm; 262 unsigned int cpu = smp_processor_id(); 263 264 printk("CPU%u: Booted secondary processor\n", cpu); 265 266 /* 267 * All kernel threads share the same mm context; grab a 268 * reference and switch to it. 269 */ 270 atomic_inc(&mm->mm_users); 271 atomic_inc(&mm->mm_count); 272 current->active_mm = mm; 273 cpu_set(cpu, mm->cpu_vm_mask); 274 cpu_switch_mm(mm->pgd, mm); 275 enter_lazy_tlb(mm, current); 276 local_flush_tlb_all(); 277 278 cpu_init(); 279 preempt_disable(); 280 281 /* 282 * Give the platform a chance to do its own initialisation. 283 */ 284 platform_secondary_init(cpu); 285 286 /* 287 * Enable local interrupts. 288 */ 289 local_irq_enable(); 290 local_fiq_enable(); 291 292 calibrate_delay(); 293 294 smp_store_cpu_info(cpu); 295 296 /* 297 * OK, now it's safe to let the boot CPU continue 298 */ 299 cpu_set(cpu, cpu_online_map); 300 301 /* 302 * Setup local timer for this CPU. 303 */ 304 local_timer_setup(cpu); 305 306 /* 307 * OK, it's off to the idle thread for us 308 */ 309 cpu_idle(); 310 } 311 312 /* 313 * Called by both boot and secondaries to move global data into 314 * per-processor storage. 315 */ 316 void __cpuinit smp_store_cpu_info(unsigned int cpuid) 317 { 318 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 319 320 cpu_info->loops_per_jiffy = loops_per_jiffy; 321 } 322 323 void __init smp_cpus_done(unsigned int max_cpus) 324 { 325 int cpu; 326 unsigned long bogosum = 0; 327 328 for_each_online_cpu(cpu) 329 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy; 330 331 printk(KERN_INFO "SMP: Total of %d processors activated " 332 "(%lu.%02lu BogoMIPS).\n", 333 num_online_cpus(), 334 bogosum / (500000/HZ), 335 (bogosum / (5000/HZ)) % 100); 336 } 337 338 void __init smp_prepare_boot_cpu(void) 339 { 340 unsigned int cpu = smp_processor_id(); 341 342 per_cpu(cpu_data, cpu).idle = current; 343 } 344 345 static void send_ipi_message(cpumask_t callmap, enum ipi_msg_type msg) 346 { 347 unsigned long flags; 348 unsigned int cpu; 349 350 local_irq_save(flags); 351 352 for_each_cpu_mask(cpu, callmap) { 353 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 354 355 spin_lock(&ipi->lock); 356 ipi->bits |= 1 << msg; 357 spin_unlock(&ipi->lock); 358 } 359 360 /* 361 * Call the platform specific cross-CPU call function. 362 */ 363 smp_cross_call(callmap); 364 365 local_irq_restore(flags); 366 } 367 368 /* 369 * You must not call this function with disabled interrupts, from a 370 * hardware interrupt handler, nor from a bottom half handler. 371 */ 372 static int smp_call_function_on_cpu(void (*func)(void *info), void *info, 373 int retry, int wait, cpumask_t callmap) 374 { 375 struct smp_call_struct data; 376 unsigned long timeout; 377 int ret = 0; 378 379 data.func = func; 380 data.info = info; 381 data.wait = wait; 382 383 cpu_clear(smp_processor_id(), callmap); 384 if (cpus_empty(callmap)) 385 goto out; 386 387 data.pending = callmap; 388 if (wait) 389 data.unfinished = callmap; 390 391 /* 392 * try to get the mutex on smp_call_function_data 393 */ 394 spin_lock(&smp_call_function_lock); 395 smp_call_function_data = &data; 396 397 send_ipi_message(callmap, IPI_CALL_FUNC); 398 399 timeout = jiffies + HZ; 400 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 401 barrier(); 402 403 /* 404 * did we time out? 405 */ 406 if (!cpus_empty(data.pending)) { 407 /* 408 * this may be causing our panic - report it 409 */ 410 printk(KERN_CRIT 411 "CPU%u: smp_call_function timeout for %p(%p)\n" 412 " callmap %lx pending %lx, %swait\n", 413 smp_processor_id(), func, info, *cpus_addr(callmap), 414 *cpus_addr(data.pending), wait ? "" : "no "); 415 416 /* 417 * TRACE 418 */ 419 timeout = jiffies + (5 * HZ); 420 while (!cpus_empty(data.pending) && time_before(jiffies, timeout)) 421 barrier(); 422 423 if (cpus_empty(data.pending)) 424 printk(KERN_CRIT " RESOLVED\n"); 425 else 426 printk(KERN_CRIT " STILL STUCK\n"); 427 } 428 429 /* 430 * whatever happened, we're done with the data, so release it 431 */ 432 smp_call_function_data = NULL; 433 spin_unlock(&smp_call_function_lock); 434 435 if (!cpus_empty(data.pending)) { 436 ret = -ETIMEDOUT; 437 goto out; 438 } 439 440 if (wait) 441 while (!cpus_empty(data.unfinished)) 442 barrier(); 443 out: 444 445 return 0; 446 } 447 448 int smp_call_function(void (*func)(void *info), void *info, int retry, 449 int wait) 450 { 451 return smp_call_function_on_cpu(func, info, retry, wait, 452 cpu_online_map); 453 } 454 EXPORT_SYMBOL_GPL(smp_call_function); 455 456 void show_ipi_list(struct seq_file *p) 457 { 458 unsigned int cpu; 459 460 seq_puts(p, "IPI:"); 461 462 for_each_present_cpu(cpu) 463 seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count); 464 465 seq_putc(p, '\n'); 466 } 467 468 void show_local_irqs(struct seq_file *p) 469 { 470 unsigned int cpu; 471 472 seq_printf(p, "LOC: "); 473 474 for_each_present_cpu(cpu) 475 seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs); 476 477 seq_putc(p, '\n'); 478 } 479 480 static void ipi_timer(void) 481 { 482 irq_enter(); 483 profile_tick(CPU_PROFILING); 484 update_process_times(user_mode(get_irq_regs())); 485 irq_exit(); 486 } 487 488 #ifdef CONFIG_LOCAL_TIMERS 489 asmlinkage void __exception do_local_timer(struct pt_regs *regs) 490 { 491 struct pt_regs *old_regs = set_irq_regs(regs); 492 int cpu = smp_processor_id(); 493 494 if (local_timer_ack()) { 495 irq_stat[cpu].local_timer_irqs++; 496 ipi_timer(); 497 } 498 499 set_irq_regs(old_regs); 500 } 501 #endif 502 503 /* 504 * ipi_call_function - handle IPI from smp_call_function() 505 * 506 * Note that we copy data out of the cross-call structure and then 507 * let the caller know that we're here and have done with their data 508 */ 509 static void ipi_call_function(unsigned int cpu) 510 { 511 struct smp_call_struct *data = smp_call_function_data; 512 void (*func)(void *info) = data->func; 513 void *info = data->info; 514 int wait = data->wait; 515 516 cpu_clear(cpu, data->pending); 517 518 func(info); 519 520 if (wait) 521 cpu_clear(cpu, data->unfinished); 522 } 523 524 static DEFINE_SPINLOCK(stop_lock); 525 526 /* 527 * ipi_cpu_stop - handle IPI from smp_send_stop() 528 */ 529 static void ipi_cpu_stop(unsigned int cpu) 530 { 531 spin_lock(&stop_lock); 532 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 533 dump_stack(); 534 spin_unlock(&stop_lock); 535 536 cpu_clear(cpu, cpu_online_map); 537 538 local_fiq_disable(); 539 local_irq_disable(); 540 541 while (1) 542 cpu_relax(); 543 } 544 545 /* 546 * Main handler for inter-processor interrupts 547 * 548 * For ARM, the ipimask now only identifies a single 549 * category of IPI (Bit 1 IPIs have been replaced by a 550 * different mechanism): 551 * 552 * Bit 0 - Inter-processor function call 553 */ 554 asmlinkage void __exception do_IPI(struct pt_regs *regs) 555 { 556 unsigned int cpu = smp_processor_id(); 557 struct ipi_data *ipi = &per_cpu(ipi_data, cpu); 558 struct pt_regs *old_regs = set_irq_regs(regs); 559 560 ipi->ipi_count++; 561 562 for (;;) { 563 unsigned long msgs; 564 565 spin_lock(&ipi->lock); 566 msgs = ipi->bits; 567 ipi->bits = 0; 568 spin_unlock(&ipi->lock); 569 570 if (!msgs) 571 break; 572 573 do { 574 unsigned nextmsg; 575 576 nextmsg = msgs & -msgs; 577 msgs &= ~nextmsg; 578 nextmsg = ffz(~nextmsg); 579 580 switch (nextmsg) { 581 case IPI_TIMER: 582 ipi_timer(); 583 break; 584 585 case IPI_RESCHEDULE: 586 /* 587 * nothing more to do - eveything is 588 * done on the interrupt return path 589 */ 590 break; 591 592 case IPI_CALL_FUNC: 593 ipi_call_function(cpu); 594 break; 595 596 case IPI_CPU_STOP: 597 ipi_cpu_stop(cpu); 598 break; 599 600 default: 601 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 602 cpu, nextmsg); 603 break; 604 } 605 } while (msgs); 606 } 607 608 set_irq_regs(old_regs); 609 } 610 611 void smp_send_reschedule(int cpu) 612 { 613 send_ipi_message(cpumask_of_cpu(cpu), IPI_RESCHEDULE); 614 } 615 616 void smp_send_timer(void) 617 { 618 cpumask_t mask = cpu_online_map; 619 cpu_clear(smp_processor_id(), mask); 620 send_ipi_message(mask, IPI_TIMER); 621 } 622 623 void smp_send_stop(void) 624 { 625 cpumask_t mask = cpu_online_map; 626 cpu_clear(smp_processor_id(), mask); 627 send_ipi_message(mask, IPI_CPU_STOP); 628 } 629 630 /* 631 * not supported here 632 */ 633 int __init setup_profiling_timer(unsigned int multiplier) 634 { 635 return -EINVAL; 636 } 637 638 static int 639 on_each_cpu_mask(void (*func)(void *), void *info, int retry, int wait, 640 cpumask_t mask) 641 { 642 int ret = 0; 643 644 preempt_disable(); 645 646 ret = smp_call_function_on_cpu(func, info, retry, wait, mask); 647 if (cpu_isset(smp_processor_id(), mask)) 648 func(info); 649 650 preempt_enable(); 651 652 return ret; 653 } 654 655 /**********************************************************************/ 656 657 /* 658 * TLB operations 659 */ 660 struct tlb_args { 661 struct vm_area_struct *ta_vma; 662 unsigned long ta_start; 663 unsigned long ta_end; 664 }; 665 666 static inline void ipi_flush_tlb_all(void *ignored) 667 { 668 local_flush_tlb_all(); 669 } 670 671 static inline void ipi_flush_tlb_mm(void *arg) 672 { 673 struct mm_struct *mm = (struct mm_struct *)arg; 674 675 local_flush_tlb_mm(mm); 676 } 677 678 static inline void ipi_flush_tlb_page(void *arg) 679 { 680 struct tlb_args *ta = (struct tlb_args *)arg; 681 682 local_flush_tlb_page(ta->ta_vma, ta->ta_start); 683 } 684 685 static inline void ipi_flush_tlb_kernel_page(void *arg) 686 { 687 struct tlb_args *ta = (struct tlb_args *)arg; 688 689 local_flush_tlb_kernel_page(ta->ta_start); 690 } 691 692 static inline void ipi_flush_tlb_range(void *arg) 693 { 694 struct tlb_args *ta = (struct tlb_args *)arg; 695 696 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); 697 } 698 699 static inline void ipi_flush_tlb_kernel_range(void *arg) 700 { 701 struct tlb_args *ta = (struct tlb_args *)arg; 702 703 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); 704 } 705 706 void flush_tlb_all(void) 707 { 708 on_each_cpu(ipi_flush_tlb_all, NULL, 1, 1); 709 } 710 711 void flush_tlb_mm(struct mm_struct *mm) 712 { 713 cpumask_t mask = mm->cpu_vm_mask; 714 715 on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, 1, mask); 716 } 717 718 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) 719 { 720 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 721 struct tlb_args ta; 722 723 ta.ta_vma = vma; 724 ta.ta_start = uaddr; 725 726 on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, 1, mask); 727 } 728 729 void flush_tlb_kernel_page(unsigned long kaddr) 730 { 731 struct tlb_args ta; 732 733 ta.ta_start = kaddr; 734 735 on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1, 1); 736 } 737 738 void flush_tlb_range(struct vm_area_struct *vma, 739 unsigned long start, unsigned long end) 740 { 741 cpumask_t mask = vma->vm_mm->cpu_vm_mask; 742 struct tlb_args ta; 743 744 ta.ta_vma = vma; 745 ta.ta_start = start; 746 ta.ta_end = end; 747 748 on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, 1, mask); 749 } 750 751 void flush_tlb_kernel_range(unsigned long start, unsigned long end) 752 { 753 struct tlb_args ta; 754 755 ta.ta_start = start; 756 ta.ta_end = end; 757 758 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1, 1); 759 } 760