1 /* 2 * linux/arch/arm/kernel/smp.c 3 * 4 * Copyright (C) 2002 ARM Limited, All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 #include <linux/module.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/spinlock.h> 14 #include <linux/sched.h> 15 #include <linux/interrupt.h> 16 #include <linux/cache.h> 17 #include <linux/profile.h> 18 #include <linux/errno.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/cpu.h> 22 #include <linux/seq_file.h> 23 #include <linux/irq.h> 24 #include <linux/percpu.h> 25 #include <linux/clockchips.h> 26 #include <linux/completion.h> 27 #include <linux/cpufreq.h> 28 #include <linux/irq_work.h> 29 30 #include <linux/atomic.h> 31 #include <asm/smp.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpu.h> 34 #include <asm/cputype.h> 35 #include <asm/exception.h> 36 #include <asm/idmap.h> 37 #include <asm/topology.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/pgalloc.h> 41 #include <asm/processor.h> 42 #include <asm/sections.h> 43 #include <asm/tlbflush.h> 44 #include <asm/ptrace.h> 45 #include <asm/smp_plat.h> 46 #include <asm/virt.h> 47 #include <asm/mach/arch.h> 48 #include <asm/mpu.h> 49 50 /* 51 * as from 2.5, kernels no longer have an init_tasks structure 52 * so we need some other way of telling a new secondary core 53 * where to place its SVC stack 54 */ 55 struct secondary_data secondary_data; 56 57 /* 58 * control for which core is the next to come out of the secondary 59 * boot "holding pen" 60 */ 61 volatile int pen_release = -1; 62 63 enum ipi_msg_type { 64 IPI_WAKEUP, 65 IPI_TIMER, 66 IPI_RESCHEDULE, 67 IPI_CALL_FUNC, 68 IPI_CALL_FUNC_SINGLE, 69 IPI_CPU_STOP, 70 IPI_IRQ_WORK, 71 IPI_COMPLETION, 72 }; 73 74 static DECLARE_COMPLETION(cpu_running); 75 76 static struct smp_operations smp_ops; 77 78 void __init smp_set_ops(struct smp_operations *ops) 79 { 80 if (ops) 81 smp_ops = *ops; 82 }; 83 84 static unsigned long get_arch_pgd(pgd_t *pgd) 85 { 86 phys_addr_t pgdir = virt_to_idmap(pgd); 87 BUG_ON(pgdir & ARCH_PGD_MASK); 88 return pgdir >> ARCH_PGD_SHIFT; 89 } 90 91 int __cpu_up(unsigned int cpu, struct task_struct *idle) 92 { 93 int ret; 94 95 /* 96 * We need to tell the secondary core where to find 97 * its stack and the page tables. 98 */ 99 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP; 100 #ifdef CONFIG_ARM_MPU 101 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr; 102 #endif 103 104 #ifdef CONFIG_MMU 105 secondary_data.pgdir = get_arch_pgd(idmap_pgd); 106 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir); 107 #endif 108 sync_cache_w(&secondary_data); 109 110 /* 111 * Now bring the CPU into our world. 112 */ 113 ret = boot_secondary(cpu, idle); 114 if (ret == 0) { 115 /* 116 * CPU was successfully started, wait for it 117 * to come online or time out. 118 */ 119 wait_for_completion_timeout(&cpu_running, 120 msecs_to_jiffies(1000)); 121 122 if (!cpu_online(cpu)) { 123 pr_crit("CPU%u: failed to come online\n", cpu); 124 ret = -EIO; 125 } 126 } else { 127 pr_err("CPU%u: failed to boot: %d\n", cpu, ret); 128 } 129 130 131 memset(&secondary_data, 0, sizeof(secondary_data)); 132 return ret; 133 } 134 135 /* platform specific SMP operations */ 136 void __init smp_init_cpus(void) 137 { 138 if (smp_ops.smp_init_cpus) 139 smp_ops.smp_init_cpus(); 140 } 141 142 int boot_secondary(unsigned int cpu, struct task_struct *idle) 143 { 144 if (smp_ops.smp_boot_secondary) 145 return smp_ops.smp_boot_secondary(cpu, idle); 146 return -ENOSYS; 147 } 148 149 int platform_can_cpu_hotplug(void) 150 { 151 #ifdef CONFIG_HOTPLUG_CPU 152 if (smp_ops.cpu_kill) 153 return 1; 154 #endif 155 156 return 0; 157 } 158 159 #ifdef CONFIG_HOTPLUG_CPU 160 static int platform_cpu_kill(unsigned int cpu) 161 { 162 if (smp_ops.cpu_kill) 163 return smp_ops.cpu_kill(cpu); 164 return 1; 165 } 166 167 static int platform_cpu_disable(unsigned int cpu) 168 { 169 if (smp_ops.cpu_disable) 170 return smp_ops.cpu_disable(cpu); 171 172 /* 173 * By default, allow disabling all CPUs except the first one, 174 * since this is special on a lot of platforms, e.g. because 175 * of clock tick interrupts. 176 */ 177 return cpu == 0 ? -EPERM : 0; 178 } 179 /* 180 * __cpu_disable runs on the processor to be shutdown. 181 */ 182 int __cpu_disable(void) 183 { 184 unsigned int cpu = smp_processor_id(); 185 int ret; 186 187 ret = platform_cpu_disable(cpu); 188 if (ret) 189 return ret; 190 191 /* 192 * Take this CPU offline. Once we clear this, we can't return, 193 * and we must not schedule until we're ready to give up the cpu. 194 */ 195 set_cpu_online(cpu, false); 196 197 /* 198 * OK - migrate IRQs away from this CPU 199 */ 200 migrate_irqs(); 201 202 /* 203 * Flush user cache and TLB mappings, and then remove this CPU 204 * from the vm mask set of all processes. 205 * 206 * Caches are flushed to the Level of Unification Inner Shareable 207 * to write-back dirty lines to unified caches shared by all CPUs. 208 */ 209 flush_cache_louis(); 210 local_flush_tlb_all(); 211 212 clear_tasks_mm_cpumask(cpu); 213 214 return 0; 215 } 216 217 static DECLARE_COMPLETION(cpu_died); 218 219 /* 220 * called on the thread which is asking for a CPU to be shutdown - 221 * waits until shutdown has completed, or it is timed out. 222 */ 223 void __cpu_die(unsigned int cpu) 224 { 225 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) { 226 pr_err("CPU%u: cpu didn't die\n", cpu); 227 return; 228 } 229 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu); 230 231 /* 232 * platform_cpu_kill() is generally expected to do the powering off 233 * and/or cutting of clocks to the dying CPU. Optionally, this may 234 * be done by the CPU which is dying in preference to supporting 235 * this call, but that means there is _no_ synchronisation between 236 * the requesting CPU and the dying CPU actually losing power. 237 */ 238 if (!platform_cpu_kill(cpu)) 239 printk("CPU%u: unable to kill\n", cpu); 240 } 241 242 /* 243 * Called from the idle thread for the CPU which has been shutdown. 244 * 245 * Note that we disable IRQs here, but do not re-enable them 246 * before returning to the caller. This is also the behaviour 247 * of the other hotplug-cpu capable cores, so presumably coming 248 * out of idle fixes this. 249 */ 250 void __ref cpu_die(void) 251 { 252 unsigned int cpu = smp_processor_id(); 253 254 idle_task_exit(); 255 256 local_irq_disable(); 257 258 /* 259 * Flush the data out of the L1 cache for this CPU. This must be 260 * before the completion to ensure that data is safely written out 261 * before platform_cpu_kill() gets called - which may disable 262 * *this* CPU and power down its cache. 263 */ 264 flush_cache_louis(); 265 266 /* 267 * Tell __cpu_die() that this CPU is now safe to dispose of. Once 268 * this returns, power and/or clocks can be removed at any point 269 * from this CPU and its cache by platform_cpu_kill(). 270 */ 271 complete(&cpu_died); 272 273 /* 274 * Ensure that the cache lines associated with that completion are 275 * written out. This covers the case where _this_ CPU is doing the 276 * powering down, to ensure that the completion is visible to the 277 * CPU waiting for this one. 278 */ 279 flush_cache_louis(); 280 281 /* 282 * The actual CPU shutdown procedure is at least platform (if not 283 * CPU) specific. This may remove power, or it may simply spin. 284 * 285 * Platforms are generally expected *NOT* to return from this call, 286 * although there are some which do because they have no way to 287 * power down the CPU. These platforms are the _only_ reason we 288 * have a return path which uses the fragment of assembly below. 289 * 290 * The return path should not be used for platforms which can 291 * power off the CPU. 292 */ 293 if (smp_ops.cpu_die) 294 smp_ops.cpu_die(cpu); 295 296 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n", 297 cpu); 298 299 /* 300 * Do not return to the idle loop - jump back to the secondary 301 * cpu initialisation. There's some initialisation which needs 302 * to be repeated to undo the effects of taking the CPU offline. 303 */ 304 __asm__("mov sp, %0\n" 305 " mov fp, #0\n" 306 " b secondary_start_kernel" 307 : 308 : "r" (task_stack_page(current) + THREAD_SIZE - 8)); 309 } 310 #endif /* CONFIG_HOTPLUG_CPU */ 311 312 /* 313 * Called by both boot and secondaries to move global data into 314 * per-processor storage. 315 */ 316 static void smp_store_cpu_info(unsigned int cpuid) 317 { 318 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid); 319 320 cpu_info->loops_per_jiffy = loops_per_jiffy; 321 cpu_info->cpuid = read_cpuid_id(); 322 323 store_cpu_topology(cpuid); 324 } 325 326 /* 327 * This is the secondary CPU boot entry. We're using this CPUs 328 * idle thread stack, but a set of temporary page tables. 329 */ 330 asmlinkage void secondary_start_kernel(void) 331 { 332 struct mm_struct *mm = &init_mm; 333 unsigned int cpu; 334 335 /* 336 * The identity mapping is uncached (strongly ordered), so 337 * switch away from it before attempting any exclusive accesses. 338 */ 339 cpu_switch_mm(mm->pgd, mm); 340 local_flush_bp_all(); 341 enter_lazy_tlb(mm, current); 342 local_flush_tlb_all(); 343 344 /* 345 * All kernel threads share the same mm context; grab a 346 * reference and switch to it. 347 */ 348 cpu = smp_processor_id(); 349 atomic_inc(&mm->mm_count); 350 current->active_mm = mm; 351 cpumask_set_cpu(cpu, mm_cpumask(mm)); 352 353 cpu_init(); 354 355 printk("CPU%u: Booted secondary processor\n", cpu); 356 357 preempt_disable(); 358 trace_hardirqs_off(); 359 360 /* 361 * Give the platform a chance to do its own initialisation. 362 */ 363 if (smp_ops.smp_secondary_init) 364 smp_ops.smp_secondary_init(cpu); 365 366 notify_cpu_starting(cpu); 367 368 calibrate_delay(); 369 370 smp_store_cpu_info(cpu); 371 372 /* 373 * OK, now it's safe to let the boot CPU continue. Wait for 374 * the CPU migration code to notice that the CPU is online 375 * before we continue - which happens after __cpu_up returns. 376 */ 377 set_cpu_online(cpu, true); 378 complete(&cpu_running); 379 380 local_irq_enable(); 381 local_fiq_enable(); 382 383 /* 384 * OK, it's off to the idle thread for us 385 */ 386 cpu_startup_entry(CPUHP_ONLINE); 387 } 388 389 void __init smp_cpus_done(unsigned int max_cpus) 390 { 391 printk(KERN_INFO "SMP: Total of %d processors activated.\n", 392 num_online_cpus()); 393 394 hyp_mode_check(); 395 } 396 397 void __init smp_prepare_boot_cpu(void) 398 { 399 set_my_cpu_offset(per_cpu_offset(smp_processor_id())); 400 } 401 402 void __init smp_prepare_cpus(unsigned int max_cpus) 403 { 404 unsigned int ncores = num_possible_cpus(); 405 406 init_cpu_topology(); 407 408 smp_store_cpu_info(smp_processor_id()); 409 410 /* 411 * are we trying to boot more cores than exist? 412 */ 413 if (max_cpus > ncores) 414 max_cpus = ncores; 415 if (ncores > 1 && max_cpus) { 416 /* 417 * Initialise the present map, which describes the set of CPUs 418 * actually populated at the present time. A platform should 419 * re-initialize the map in the platforms smp_prepare_cpus() 420 * if present != possible (e.g. physical hotplug). 421 */ 422 init_cpu_present(cpu_possible_mask); 423 424 /* 425 * Initialise the SCU if there are more than one CPU 426 * and let them know where to start. 427 */ 428 if (smp_ops.smp_prepare_cpus) 429 smp_ops.smp_prepare_cpus(max_cpus); 430 } 431 } 432 433 static void (*smp_cross_call)(const struct cpumask *, unsigned int); 434 435 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) 436 { 437 if (!smp_cross_call) 438 smp_cross_call = fn; 439 } 440 441 void arch_send_call_function_ipi_mask(const struct cpumask *mask) 442 { 443 smp_cross_call(mask, IPI_CALL_FUNC); 444 } 445 446 void arch_send_wakeup_ipi_mask(const struct cpumask *mask) 447 { 448 smp_cross_call(mask, IPI_WAKEUP); 449 } 450 451 void arch_send_call_function_single_ipi(int cpu) 452 { 453 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); 454 } 455 456 #ifdef CONFIG_IRQ_WORK 457 void arch_irq_work_raise(void) 458 { 459 if (is_smp()) 460 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); 461 } 462 #endif 463 464 static const char *ipi_types[NR_IPI] = { 465 #define S(x,s) [x] = s 466 S(IPI_WAKEUP, "CPU wakeup interrupts"), 467 S(IPI_TIMER, "Timer broadcast interrupts"), 468 S(IPI_RESCHEDULE, "Rescheduling interrupts"), 469 S(IPI_CALL_FUNC, "Function call interrupts"), 470 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"), 471 S(IPI_CPU_STOP, "CPU stop interrupts"), 472 S(IPI_IRQ_WORK, "IRQ work interrupts"), 473 S(IPI_COMPLETION, "completion interrupts"), 474 }; 475 476 void show_ipi_list(struct seq_file *p, int prec) 477 { 478 unsigned int cpu, i; 479 480 for (i = 0; i < NR_IPI; i++) { 481 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i); 482 483 for_each_online_cpu(cpu) 484 seq_printf(p, "%10u ", 485 __get_irq_stat(cpu, ipi_irqs[i])); 486 487 seq_printf(p, " %s\n", ipi_types[i]); 488 } 489 } 490 491 u64 smp_irq_stat_cpu(unsigned int cpu) 492 { 493 u64 sum = 0; 494 int i; 495 496 for (i = 0; i < NR_IPI; i++) 497 sum += __get_irq_stat(cpu, ipi_irqs[i]); 498 499 return sum; 500 } 501 502 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 503 void tick_broadcast(const struct cpumask *mask) 504 { 505 smp_cross_call(mask, IPI_TIMER); 506 } 507 #endif 508 509 static DEFINE_RAW_SPINLOCK(stop_lock); 510 511 /* 512 * ipi_cpu_stop - handle IPI from smp_send_stop() 513 */ 514 static void ipi_cpu_stop(unsigned int cpu) 515 { 516 if (system_state == SYSTEM_BOOTING || 517 system_state == SYSTEM_RUNNING) { 518 raw_spin_lock(&stop_lock); 519 printk(KERN_CRIT "CPU%u: stopping\n", cpu); 520 dump_stack(); 521 raw_spin_unlock(&stop_lock); 522 } 523 524 set_cpu_online(cpu, false); 525 526 local_fiq_disable(); 527 local_irq_disable(); 528 529 while (1) 530 cpu_relax(); 531 } 532 533 static DEFINE_PER_CPU(struct completion *, cpu_completion); 534 535 int register_ipi_completion(struct completion *completion, int cpu) 536 { 537 per_cpu(cpu_completion, cpu) = completion; 538 return IPI_COMPLETION; 539 } 540 541 static void ipi_complete(unsigned int cpu) 542 { 543 complete(per_cpu(cpu_completion, cpu)); 544 } 545 546 /* 547 * Main handler for inter-processor interrupts 548 */ 549 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs) 550 { 551 handle_IPI(ipinr, regs); 552 } 553 554 void handle_IPI(int ipinr, struct pt_regs *regs) 555 { 556 unsigned int cpu = smp_processor_id(); 557 struct pt_regs *old_regs = set_irq_regs(regs); 558 559 if (ipinr < NR_IPI) 560 __inc_irq_stat(cpu, ipi_irqs[ipinr]); 561 562 switch (ipinr) { 563 case IPI_WAKEUP: 564 break; 565 566 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 567 case IPI_TIMER: 568 irq_enter(); 569 tick_receive_broadcast(); 570 irq_exit(); 571 break; 572 #endif 573 574 case IPI_RESCHEDULE: 575 scheduler_ipi(); 576 break; 577 578 case IPI_CALL_FUNC: 579 irq_enter(); 580 generic_smp_call_function_interrupt(); 581 irq_exit(); 582 break; 583 584 case IPI_CALL_FUNC_SINGLE: 585 irq_enter(); 586 generic_smp_call_function_single_interrupt(); 587 irq_exit(); 588 break; 589 590 case IPI_CPU_STOP: 591 irq_enter(); 592 ipi_cpu_stop(cpu); 593 irq_exit(); 594 break; 595 596 #ifdef CONFIG_IRQ_WORK 597 case IPI_IRQ_WORK: 598 irq_enter(); 599 irq_work_run(); 600 irq_exit(); 601 break; 602 #endif 603 604 case IPI_COMPLETION: 605 irq_enter(); 606 ipi_complete(cpu); 607 irq_exit(); 608 break; 609 610 default: 611 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n", 612 cpu, ipinr); 613 break; 614 } 615 set_irq_regs(old_regs); 616 } 617 618 void smp_send_reschedule(int cpu) 619 { 620 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); 621 } 622 623 void smp_send_stop(void) 624 { 625 unsigned long timeout; 626 struct cpumask mask; 627 628 cpumask_copy(&mask, cpu_online_mask); 629 cpumask_clear_cpu(smp_processor_id(), &mask); 630 if (!cpumask_empty(&mask)) 631 smp_cross_call(&mask, IPI_CPU_STOP); 632 633 /* Wait up to one second for other CPUs to stop */ 634 timeout = USEC_PER_SEC; 635 while (num_online_cpus() > 1 && timeout--) 636 udelay(1); 637 638 if (num_online_cpus() > 1) 639 pr_warning("SMP: failed to stop secondary CPUs\n"); 640 } 641 642 /* 643 * not supported here 644 */ 645 int setup_profiling_timer(unsigned int multiplier) 646 { 647 return -EINVAL; 648 } 649 650 #ifdef CONFIG_CPU_FREQ 651 652 static DEFINE_PER_CPU(unsigned long, l_p_j_ref); 653 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq); 654 static unsigned long global_l_p_j_ref; 655 static unsigned long global_l_p_j_ref_freq; 656 657 static int cpufreq_callback(struct notifier_block *nb, 658 unsigned long val, void *data) 659 { 660 struct cpufreq_freqs *freq = data; 661 int cpu = freq->cpu; 662 663 if (freq->flags & CPUFREQ_CONST_LOOPS) 664 return NOTIFY_OK; 665 666 if (!per_cpu(l_p_j_ref, cpu)) { 667 per_cpu(l_p_j_ref, cpu) = 668 per_cpu(cpu_data, cpu).loops_per_jiffy; 669 per_cpu(l_p_j_ref_freq, cpu) = freq->old; 670 if (!global_l_p_j_ref) { 671 global_l_p_j_ref = loops_per_jiffy; 672 global_l_p_j_ref_freq = freq->old; 673 } 674 } 675 676 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 677 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { 678 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref, 679 global_l_p_j_ref_freq, 680 freq->new); 681 per_cpu(cpu_data, cpu).loops_per_jiffy = 682 cpufreq_scale(per_cpu(l_p_j_ref, cpu), 683 per_cpu(l_p_j_ref_freq, cpu), 684 freq->new); 685 } 686 return NOTIFY_OK; 687 } 688 689 static struct notifier_block cpufreq_notifier = { 690 .notifier_call = cpufreq_callback, 691 }; 692 693 static int __init register_cpufreq_notifier(void) 694 { 695 return cpufreq_register_notifier(&cpufreq_notifier, 696 CPUFREQ_TRANSITION_NOTIFIER); 697 } 698 core_initcall(register_cpufreq_notifier); 699 700 #endif 701